GET THE APP

 

NutriSim© protects against hippocampal neuronal damage induced by ischemia-reperfusion in Mongolian gerbils (Meriones unguiculatus): Morphological and biochemical approach

Abstract

Rolando Romero Dávalos1 , P. Fermín Pacheco-Moisés2 *, Armida Miranda-Riestra3 , Carmen Barajas-Martínez2 , Ariana Navarro-Meléndez2 , Sergio Rodríguez-Reynoso4 , Irma E. Velázquez-Brizuela5 , J. A. Cruz-Ramos3 and Genaro Gabriel Ortiz3

Mongolian gerbil model has been extensively used for the study of neuroprotective drugs since transient bilateral common carotid artery occlusion induces neuronal cell death to selectively vulnerable regions, including the CA1 sector of the hippocampus. Oxidative stress is strongly involved in this phenomenon. NutriSim© a nutritive supplement has been used empirically in the treatment of several degenerative disorders. Therefore in the present work we studied the ability of NutriSim© to protect against brain damage induced by ischemia-reperfusion in Mongolian gerbils. Brain damage was monitored by histological analysis of CA1 region and quantitative determinations of lipoperoxides, nitric oxide catabolites (nitrates/nitrites) and Glutathione peroxidase enzyme (GPx) activity. We found that a single dose of NutriSim© reduces hippocampal neuronal death in the CA1 of the hippocampus and attenuates increases in lipid peroxidation products (malondialdehyde and 4- hydroxyalkenals), nitric oxide catabolites (nitrates/nitrites) and GPx activity. These results suggest that neuroprotective effects of NutriSim© are partly attributed to its antioxidant action.

PDF

Share this article