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Mineral resource prediction is becoming increasingly important as researchers attempt to resolve the 
prospect direction by mining geological data. In this paper, Support Vector Regression (SVR) is applied 
to predict iron deposit metallogenic favourability degree since SVR is a powerful tool to solve the 
problem characterized by smaller sample, nonlinearity, and high dimension with a good generalization 
performance based on structural risk minimization. The paper discusses the support vector regression 
algorithm in some detail, describes a SVR based-system that learns from examples to predict 
metallogenic favourability degree of iron deposit and contrasts this approach with Partial Least 
Squares (PLS). The experimental results show that SVR has high recognition rates and good 
generalization performance for small sample, especially good for treating the data of some nonlinearity 
in geology. 
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INTRODUCTION 
 
Support Vector Machine (SVM) is an excellent kernel-
based tool for binary data classification and regression. 
The method to solve regression problems using SVM is 
called Support Vector Regression (SVR), which is one of 
the most important applications of function approximation. 
This learning strategy was introduced in the mid-1960s by 
Vapnik and co-workers (Vapnik and Chervonekis, 1991; 
1999). It is developed within the area of statistical 
learning theory and structural risk minimization and hence 
has comparable or better results than neural networks 
and other traditional learning methods (Vapnik, 1999; 
1999). Based on the structural risk minimization (SRM) 
principle, SVMs have become in the last few years one of 
the most popular approaches to learning from examples 
with many potential applications in science and 
engineering, such as in the pattern recognition, function 
estimation, signal processing, control and other fields 
(Scholkopf et al., 1997; Stitson et al., 1999). 

In mineral resource prediction, some traditional 

methods, such as Artificial Neural Network (ANN), multi-

ple statistical analysis and fuzzy sets theory, have been 
used to calculate the metallogenicl favourability degree. 

These methods often require a large number of sample  

 

data. Actually, large number of sample data is hard to 

collect in prospective mining area with less geological 

works. Therefore, it is difficult to predict metallogenic 

favourability degree by the traditional methods in the 

area.  
Careful contrast of SVR and traditional methods shows 

up the advantages of the first one, especially in the 
condition of small sample and nonlinear data. In this 
article, SVR was adopted to predict the mineral potential 
of iron deposit. A brief summary of SVR was given. The 
adequate geological data was applied to the model and 
good prediction results were obtained. 
 
SUPPORT VECTOR REGRESSION 
 
SVR is a powerful machine learning method that is useful for 

constructing data-driven non-linear process models by a kernel function. 

It shares many features with artificial neural network (ANN) but 

possesses some additional desirable characteristics and is gaining 

widespread acceptance in data-driven non-linear modeling applications. 

SVR possesses good generalization ability of regression function, 

robustness of solution, addressing regression from sparse data and an 

automatic control of solution complexity. The method brings out the 

explicit data points from the input variables that are important for 

defining the regression function. 

 
 

ISSN: 2449-1861 Vol. 4 (12), pp. 380-384, December, 2016.                                                           

Copyright ©2016                                                                          Global Journal of Geosciences and Geoinformatics 

Author(s) retain the copyright of this article.                                                                
http://www.globalscienceresearchjournals.org/                                       

http://www.globalscienceresearchjournals.org/


Glob. J. Geosci. Geoinfo.   381 
 
 
 
This feature of SVR makes it interpretable in terms of the training 
data in comparison with the other black- box models including ANN, 
where the model parameters are difficult to interpret.  

Given is a brief description of SVR. Vapnik has a more detailed 
description of SVR (Vapnik, 1999). Given dataset 

 
obtained  from  a  latent  function  where  xi 

denotes the sample vector, yi the corresponding response and N is 
the total number of samples. In the SVR, the original data is first 
nonlinearly mapped into a high dimensional feature space, and then 
a linear function is fitted to approximate the latent function between 
x and y.  

Given the training data, the linear 


 -SVR algorithm theoretically aims 
to solve the optimizing problem, which can be written in the following 
form with an -insensitive loss term: Minimize: 
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where C, penalty parameter is a predefined regularizing parameter. 

The above minimizing problem can further be expressed in the 

following form with the slack variable i
(*) introduced: Minimize: 
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Then, we can obtain a lagrange function from the above objective 
function (also referred as the primal objective function) and the 
corresponding constraints by introducing a dual set of variables. It 
can be shown that this function has a saddle point with respect to 
the primal and dual variables at the solution. The Lagrangian is as 
follows: 
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 (* ) ,  (* )  

 

         are Lagrange multipliers. 
 

 
It follows from the saddle point condition that the partial derivatives 
 
of L with respect to the primal variables  
vanish for optimality. Thus, the following equations hold. 
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Substituting above equations into L functions yields a dual 

optimization problem: Maximize: 
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With the help of Lagrange multiplier method and QP algorithm, the 

regression function can be derived as 
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For nonlinearity, the original input was first nonlinearly mapped into the 

feature space by introducing the kernel function and the resulted 


 -SVR becomes so flexible that it can be used to deal with the complicated 
nonlinear regression problem in geology.  

As the deriving procedure of the final decision function is quite 

similar to that in the linear case, we here only give the ultimate 

mathematical form as, 
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where 
 i* and  

i are  the  optimized  Lagrange  multipliers, and 

k ( xi 
,
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 is the kernel function.  
For the regression by SVR, the user has to select three parameters,  

namely insensitivity parameter 


 , the penalty parameter C and the 

shape parameter of kernel function. The choice of these parameters 
is vital to good regression. If C is too small then insufficient stress 
will be placed on fitting the training data. If C value is too large then 
the algorithm will over fit the training data and over fit implies poor 
generalization. Maximum value that C can take is infinity.  

The performance of SVR largely depends on the choice of the 

kernel type and the kernel parameters. However, there is no 

 ( 
w

 
,
 
b

 
,
 


 i 
,
 


 i
*

 
)

 have to 

 D  xi, yi i
N
 1 



       
 

  Table 1. Input and output variablesa.      
 

       
 

  Key input variables  
Output variable 

 
 

  

Geology Geophysics 
  

 

      
 

  HSY1, HSY2, HSY3, DLJL, DLJH, QRY1, QRY2 DZX,YCJL, HCJZ, SNJL, DYYC  MFD   
 

  HDY1-C1x/C1a intermediate-acid volcanic rocks; HSY2-C2sh sedimentary -volcanic rocks; HSY3-C2m intermediate-  
 

basic volcanic rocks;  DLJL-distance between unit and fracture; DLJH-crossing of different fractures in a unit; QRY1- 


 42  

intermediate intrusive rocks; QRY2- 


 42 acid intrusive rocks; DZX- the shapes of bouguer gravity contour; YCJL-

distance between unit and residual gravity anomaly; HCJZ-the average value of aeromagnetic survey in a unit; SNJL-
distance between unit and positive magnetic anomaly in the range of SN 45°; DYYC-exist or adjacent to magnetic 
anomaly caused by iron deposit in a unit; MFD-metallogenicl favourability degree. 

 
 
 
Table 2. Partial variable values in training set. 
 
 Unit HSY1 HSY2 HSY3 DLJL DLJH QRY1 QRY2 DZX YCJL HCJZ SNJL DYYC MFD  

 001 0 0 0 1 0 0 0 0 0 0 0 0 1  

 002 0 0 0 0 0 0 0 1 0 0 1 1 1  

 003 0 0 0 0 0 0 1 1 0 0 1 0 1  

 - - - - - - - - - - - - - 1  

 040 0 1 1 0 0 0 1 0 0 0 1 0 1  

 041 0 0 0 1 0 0 0 0 0 0 1 1 0  

 042 0 0 0 0 0 0 1 0 0 0 1 1 0  

 043 0 0 1 0 0 0 1 1 1 0 1 0 0  

 - - - - - - - - - - - - - 0  

 080 1 1 0 0 0 0 0 1 1 0 1 0 0  

 
 
 
theoretical guidance on how to choose a kernel function. The best 

choice of a kernel for a given problem is still an open research 
issue. In the absence of any known guidelines, kernel has to be 

chosen in a data dependent way. 
 
 
CASE STUDY 
 
In this section, SVR method was applied to predict the mineral 
potential of iron deposit, which was employed to explore the 
performance of SVR. This dataset collected geological data and 
geophysical data of 126 geological units in Eastern Tianshan area. 
Data in 126 geological units were randomly divided into the training 
set and test set for the construction and evaluation of SVR model, 
80 dataset for training and 46 dataset for test. The input variables 
and the output variables are listed in Table 1.  

Partial variable values for training are presented in Table 2. For 
input variable, when a geological unit exists an input variable, the 
variable value is 1, conversely, variable value is 0. For output 
variable, if there is iron deposit in a geological unit, MFD value is 1, 
conversely, MFD value is 0.  

The libsvm package (Chang and Lin, 2001) is employed in our 
study to construct SVR models. The genetic algorithm is also 
applied for the parametric optimizing. In addition, all the other 
programs needed in our studies are coded in Matlab 7.1. 
 
 
RESULTS AND DISCUSSION 
 
Partial least squares (PLS) are a basic and powerful tool 

 
 
 

for modeling the linear relationship between 
x

 and 
y

 in 

geomathematics. It can also resist the nonlinearity to 
some extent. In this study, PLS is used as the reference 
method and the comparative analysis between PLS and 
SVR is conducted to give some insight into these two 
methods.  


 -SVR is applied here to construct the SVR model. 
The Radial Basis Function (RBF) is used as the kernel. 
The of the RBF kernel is set to the default value in the 
libsvm software. There are two parameters to be pre-
defined before training. One is the regularizing factor C,  

the other is the sparsity parameter 


 . So far the most 

commonly applied technique for determining the 
parameters model is cross -validation (CV). But it can not 
find the best parameter or combination of different 
parameters in a global and comprehensive manner. Here, 
the genetic algorithm (GA) is used to optimize these two 
parameters to predict the model because GA has 
theability to globally locate the optimized solution. In GA, 
the objection is to minimize the error rate of 10-fold cross-
validation calculated by SVR. The optimized values of C  

and 


 by GA are 59.69 and 0.3292, respectively. The SVR 
model is built with the optimized parameters using the 
training set.  

The Root Mean Squared Error Of Prediction (RMSEP) 

value was used to evaluate the performance of the two 

Chiang    382 



Glob. J. Geosci. Geoinfo.   383 
 
 
 

Table 3. RMSEP of PLS and SVRa 
 

  Train Test Trainb R2  

 PLS 2.4679 2.8941 3.3524 0.9633  

 SVR 1.9348 2.5836 3.3496 0.9739   

The optimized parameters of SVR: C=59.69, 


 =0.3292,. Notice that the original y-value are scaled into 

the region [0, 1] when building PLS and SVR model. But the results in this table are reported after 
transforming the scaled y-value into the original unit. RMSEP based on the 10-fold cross-validation. 

 

 
methods. The RMSEP of the test sample set is calculated 

as follows: 
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where N  represents the total number of the data points in 

 

the test set, and 
yi  represents the predicted value. 

 
Both the results obtained by PLS and SVR are shown in 

Table 3. From Table 3, the result on SVR model is promising 

in relative term to PLS method. The RMSEP of SVR for the 

training set and test set are lowered by 21.6% compared to 

that of PLS, which indicates an obvious improvement. The 

squared correlative coefficients of SVR and PLS on the 

whole data set are 0.9739 and 0.9633, respectively. This 

result can further prove the better prediction ability of SVR. It 

may be concluded that SVR has the ability to grasp the 

nonlinearity problem, especially in the condition of small 

sample.  
The results show that SVR can predict iron resource 

more accurately. The reason may be that some 
nonlinearity component had been manually added to the 
dataset in the condition of small sample, such that the 
linear PLS can not work well. But the kernel- based SVR 
have the ability to handle it. The study clearly shows that 
SVR is indeed a good alternative for regression analysis 
in the condition of small sample. Thus, we may conclude 
that SVR is more powerful in capturing the latent data 
structure and modeling the unknown nonlinearity in the 
condition of small sample. From this point of view, SVR 
seems to be a promising method for modeling the real 
world data (Table 3).  

It should be pointed out that SVR has its limitation and 
disadvantages when dealing with geological dataset. 
First, SVR is nonlinear, and this makes it difficult for the 
researcher to explain the results, e.g. which region or the 
combination of different regions is really meaningful for 
the model. Second, the optimization of parameters of 
SVR is a relatively time-consuming task compared to 
PLS, which may limit their applications. 

 
Conclusion 
 
Support  vector machines  are  becoming  increasingly 

 

 
popular in dealing with regression problem. Firmly rooted 
in the VC theory in the field of machine learning, this 
method was originally developed for the classification 
problem by Vapnik and the coworkers. By introducing the  


 -insensitive loss function, it had been extended to solve 

the regression problem. In this paper, the dimensional 
superiority and linearly separability are discussed first. 
Then, the kernel function is introduced to perform the 
nonlinear mapping into a high dimensional feature space 
and calculate the inner product in the condition of small 
sample. Finally, the basic theory and algorithm of SVR 
are discussed in detail. It can be concluded that SVR 
work in the following two steps: (1) Nonlinearly mapping 
of the original data into a feature space, and (2) Then 
constructing a linear OSH with the maximal margin.  

For demonstrating the performance of SVR, a set of 
geology, geophysics data for iron deposit resource are 
analyzed by the method. The results also show that the 
overall performance of SVR is better than that of PLS. 
Therefore, it should be further concluded that the mystery 
that SVMs are usually more flexible and have better 
generalization performance compared with the traditional 
statistical or machine learning methods is due to the 
intrinsic nature in mathematics.  

Currently, in the field of mineral resource prediction, 
most of the regression problem are done using linear 
methods, e.g. PLS, which need much model data. 
However, most of data is nonlinearity and sample data 
set is smaller in mineral resource prediction. In this 
context, the traditional methods are hard. In the research 
a new approach, support vector regress is applied in 
prediction and solves the above problem. It is a 
meaningful attempt in mineral resource prediction, which 
will help geological engineers quantitatively predict an ore 
prospecing area and resources using nonlinear 
geological data in prospective mining area with less 
geological works. It is significant for geologists to extend 
ore- search thinking, to innovate ore-search techniques 
and methods and to enhance ore-search success rate. At 
the same time, SVR also gain a wide variety of 
applications in reality.  

Several factors may affect the prediction accuracy. One 
is the diversity of iron deposit data. It is likely that not all 
possible types of iron deposit data are adequately 
represented in the training sets. This can be improved 
along with the availability of more iron deposit data. SVR 
optimization procedure and feature vector selection may 



 
 
 

 
also be improved. 
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