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Abstract 

 
In this paper, timelike-spacelike Mannheim partner curve couple was defined in Lorentzian space IR1

3 

 
and the relations were given between the curvatures and torsions of these curves. Furthermore, for a 

given curve couple, the necessary and sufficient conditions were obtained to become timelike-spacelike 
Mannheim partner curve couple in IR1

3
 . 
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INTRODUCTION 

 
As is well-known, a surface is said to be “ruled” if it is 

generated by moving a straight line continuously in Euclidean 

space (O’Neill, 1997). Ruled surfaces are one of the simplest 

objects in geometric modeling. One important fact about ruled 

surfaces is that they can be generated by straight lines. A 

practical application of these type of surfaces is that they are 

used in civil engineering and physics (Guan et al., 1997). 

 
Since building materials, such as wood are straight, they can 

be considered as straight lines. The result is that if engineers 

are planning to construct something with curvature, they can 

use a ruled surface since all the lines are straight (Orbay et al., 

2009). In the differential geometry of a regular curve in the 

Euclidean 3-space  
IE 

3
 , it is well-known that one of the important problem is 

the characterization of a regular curve. The curvature  
functions k1   and k2   of a reguler curve play an important  
role to determine the shape and size of the curve (Kuhnel, 

1999; Do Carmo, 1976). For example, If 

k1  k2  0 , the curve is geodesic. If  k 1     0  c o n s t a n t 
and k2  0 , then the curve is a circle with radius 1 k1  . If 

k
 1 

  0  c o n s t a n t  andk 2     0   c o n s t a n t  ,then   

the  
curve is a helix in the space.  
 
 
 
*Corresponding author. E-mail: senyurtsuleyman@hotmail.com or 

ssenyurt@odu.edu.tr. 

 
Another way to the classification and characterization of 

curves is the relationship between the Frenet vectors of the 

curves. For example Saint Venant proposed the question 

whether upon the surfaces generated by the principal normal of 

a curve, a second curve can exist which has for its principal 

normal the principal normal of the given curve. This question 

was answered by Bertrand in 1850; he showed that a necessary 

and sufficient condition for the existence of such a second 

curve is that a linear relationship with constant coefficients 

exists between the first and second curvatures of the given 

original curve. The pairs of curves of this kind have been called 

conjugate Bertrand curves, or more commonly Bertrand curves. 

There are many works related with Bertrand curves in the 

Euclidean space and Minkowski space. Another kind of 

associated curves are called Mannheim curve and Mannheim 

partner curve. If there exists a corresponding relationship 

between the space 

 

curves α and β such that, at the corresponding points of the 

curves, principal normal lines of α coincides with the binormal 

lines of β , then α is called a Mannheim curve, and β 

Mannheim partner curve of α .  
In recent studies, Liu and Wang (2007, 2008) are curious 

about the Mannheim curves in both Euclidean and Minkowski 

3-space and they obtained the necessary and sufficient 

conditions between the curvature and the torsion for a curve to 

be the Mannheim partner curves. Meanwhile, the detailed 

discussion concerned with the Mannheim curves can be found 

in literature (Wang and 
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Liu, 2007; Liu and Wang, 2008; Orbay and Kasap, 2009; 

Özkaldi et al., 2009; Azak, 2009) and references therein.  
In this paper, we study the timelike-spacelike Mannheim 

partner curves in Lorentzian space IR1
3
 . 

 

 

PRELIMINARY 

 

The Minkowski 3-space IR1
3
 is the real vector space IR 

3
 

provided with the standart flat metric given by: 

 

 ,  = − dx1
2
  + dx2

2
  + dx3

2 

 

where   x1 , x2 , x3  is a standard rectangular coordinate 
 

system of IR1
3
 . An arbitrary vector v = v1 , v 2 , v3 in IR1

3 

can have one of three Lorentzian causal characters; it 
   R R     

can be  spacelike if   v , v   > 0 or  v = 0 , timelike if 
R R    R R    

v , v < 0 and null (lightlike) if v , v   = 0 and v ≠ 0 .  
 

Similarly, an arbitrary curve α = α  s  can locally be 

spacelike, timelike or null (lightlike), if all of its velocity 

vectors α
′
  s  are spacelike, timelike or null (lightlike), 

 
respectively. We say that a timelike vector is future pointing or 

past pointing if the first compound of the vector is positive or 

negative, respectively. The norm of 

the vector v = v1 , v 2 , v3  ∈ IR1
3
   is given by: 

 
R R  
v = v 

 
 

For any vectors x =  x1 , x 2 , x3  and y =  y1 , y 2 , y3 

 in IR1
3
 in the meaning of Lorentz vector product of x and 

y is defined by: 

 

R UR 
e1 − e 2 − e3 

 

 

x 
2 

x 
3 

 

x 
1 

x 3
  , − 

 

x 
1  

x 
2 

 

 
    

          

x ∧  y  = x  x  x =    ,        
   1   2  3    

y 2 y 3 

 

y 1 y 3 

 

y 1 y 2 

  

     

 

    

 
  

y 1 y 2 y 
     

  3                    
The Lorentzian sphere and hyperbolic sphere of radius r and 

center 0 in IR1
3
 are given by: 

 
R R  R 

S1
2
  = x =  x1 , x 2 , x3  ∈ IR1

3
  :  x , x   = r 

2 

 
 
and 
 

R R  R 

 , respectively H 0
2
  = x =  x1 , x2 , x3  ∈ IR1

3
  : x , x   = −r 

2 
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Definition 1                    

Hyperbolic angle                 

Let a  and b  be timelike vectors in IR
3 

. Then, the angle 
              1       

between   a    and b   is   defined by 
R R  R    R  

COSH θ . The number θ  is called the a , b   = − a    b  
                        

hyberbolic angle.                 

Central angle                    

Let a and b be spacelike vectors in IR
3
    that span a 

                    1   

timelike vector subspace. Then, the angle between a 

and 

 

is defined by 

R R 

= 
 R    R  

COSH θ .  The b a, b  a    b  
                

number θ  is called the central angle.       

Spacelike angle                 

Let a and b be spacelike vectors in IR
3
    that span a 

                    1   

spacelike vector subspace. Then, the angle between a 

and b  is defined by 

R R 

= 
R    R  

COS θ . The number a , b a    b  
                            
θ is called the spacelike angle. 
 
 

Lorentzian timelike angle 

 

Let a  be a spacelike vector and b  be a timelike vector in 

IR
3 

. Then, the angle between  a  and  b is defined by 
1                     

R R   R    R      

.  The number  θ is  called the a , b    =  a    b S I N H θ 
          

Lorentzian timelike angle.     

Let t s , n s , b s be the  moving Frenet  frame 
       

along the curve α  s  . Then t  s  , n  s and b  s  are   
tangent, the principal normal and the binormal vector of the 

curve α  s  , respectively. Depending on the casual 
 
character of the curve α , we have the following dual Frenet-

Serret formulas. If α is a timelike curve;  

 t ′  0 

k
 1  0 t 

(1)          

 n ′ = 
k

 1 0 k 2  
n 

 
    

0 − k 2 0 

   

b ′   
b 

 
where 

 
t , t  = −1,  n , n  = b , b  = 1, t , n  =  n, b  = t , b  = 0.  
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We denote by v 1 ( s ) , v 2 ( s ) , v 3 ( s ) the moving Frenet 

frame along the curve β  s  . Then, v1  s  , v2  s  and 

v3  s  are tangent, the principal normal and the binormal 

vector of the curve β  s  , respectively. Depending on the 

casual character of the curve β , we have the following Frenet-

Serret formulas. If β is a spacelike curve with a timelike 

binormal v3 ; 

 
 
 

 

timelike-spacelike Mannheim partner curves in the same space. 

Using these relationships, we will comment on Shell’s and 

Mannheim’s theorems again. 
 

 

Definition 2 

 

Let  α : I → IR1
3
 be a timelike curve and  β : I → IR1

3 

 
be spacelike with timelike binormal. If there exists a 

corresponding relationship between the timelike curve α  
and the spacelike curve with dual timelike binormal  β  

 v ′   
 0 p 0 v 1  (2) 

such that, at the corresponding points of the curves, the 
  1   binormal lines of α  coincides with the principal normal   ′         

v 2 
  

 
v 2 

 

= 
−  p 0 q    

lines of β , then α  is called a timelike Mannheim curve,    

 

     

 

 

 

 

 
v ′ 

 

0 q 0 
v

 3 
 

                

  3             and β is called a Mannheim partner curve of  α . The                

where            pair α , β 

 is said to be timelike-spacelike Mannheim 

                         

v 3 , v 3  

 
= − 1,  v1 , v1 =   v 2 , v 2 = 1,  v1 , v 2 =   v 2 , v 3     =  v1 , v3     = 0. 

pair.  Let t , n, b be the Frenet frame  field  along 
          

 If the curves are unit speed curve, then curvature and 
α  α  s  and let v1 , v2 , v3 be the Frenet frame field 

torsion are calculated by:   
             

               along β  β  s  . On the other way θ  is angle between 
  

= 
 

t ′ 
                    

k
 1   ,       t  and v1 ,  there is a following equation between the 

 

               
    

n 
′
 , b 

      

Frenet vectors and their derivative; 
 

k 2 =  , ,    (3)  
                          
               

v1  S I N H θC O S H θ0t  

 

 
               
               

p =  
v 1 
′ 

 ,          0  0   (5) 
 

              v
 2 


 

 1n .  
                   

                         
  

=v 2 
′
 , v 3 . 

     v
 3 CO S H θS I N H θ0b 

 
q 

      

                           
 
If the curves are not unit speed curve, then curvature and 

torsion are calculated by: 
 

   
α 

′
  ∧  α 

′′    
 

     

= 
             k

 1 

           

, 
 

  

 

 

 

α 
′  

 

 

3  

  

      

            

(4) 
 

             

  

D E T  α  ′ , α  ′′ , α  ′′′  

= 
  

k
 2 

  

,  2  
α 

′
  ∧  α 

′′ 
 
            
            

            

 
  

β 
′
  ∧  β 

′′       
        

         

p  = 
       

,   

 

    3    

    β 
′ 

      
            

 
D E T   β ′ , β ′′ , β ′′′ 

 

q  = . 
          

    

β 
′
  ∧  β 

′′  2  
      

       

 
           
           

 

 

TIMELIKE-SPACELIKE MANNHEIM PARTNER 

CURVE IN IR1
3 

 

Here, we define timelike-spacelike Mannheim partner curves in 

IR1
3
 and we give some characterization for 

 

Theorem 1 

 

The distance between corresponding points of the timelike-

spacelike Mannheim partner curves in IR1
3
 is constant. 

 
 

 

Proof 
 
From the definition of spacelike Mannheim curve, we can 

write: 
 
% * 

) = α%(s) + λ  s  B  s . (6) β ( s 
 

By taking the derivate of this equation with respect to s and 
applying the Frenet formulas, we get: 

 

 ds
* 

= t − λ k 2 n + λ ′b 

(7) 

   

v
1   ds  

where the  superscript  '  denotes  the  derivate  with 
 
respect to the arc length  parameters of  the dual  curve 



 
 
 

 

α ( s) . Since the vectors b  and v2 are linear, we get : 

v ds
* 

, b   =  t , b  − λ k  n, b  + λ ′  b, b  , λ′ = 0.  
   

1
   ds 2     

Then,  we  get  λ = c .  On  the other  hand,  from the 

definition of distance function between α ( s) and  β ( s) 

we can write:       
 

d α ( s ) , β ( s) = λ  s  B  s   = λ . 
 
 

This completes the proof. 
 

 

Theorem 2       

For a timelike-spacelike curve α in IR
3 

,  there is a 
    1  

spacelike  curve  β   so that 
 

is a  spacelike α , β  
 
Mannheim pair. 
 

 

Proof 

 

Since the vectors v2   and b  are linearly dependent, the 
 
Equation 6 can be written as: 
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v ds
* 

= t − λk n. (10)  

 

1 ds 2   

Let θ  be dual angle between the dual tangent vectors t 

and v1 , we can write:  

v  = SINH θ t + COSH θ  n  
 1   (11) 

v3  = COSH θ  t + SINH θ  n.  
From Equations 10 and 11 , we get: 
 

ds 
* 

= 
1 

,    − λ k2  = COSH θ 
ds

* 

(12) 
   

. 
ds SINH θ 

 

  ds  
 

By taking the derivate of Equation 8 with respect to s and 

applying the Frenet formulas, we obtain: 

 

k 2  = 1 + λ p  v1 
ds 

* 

− λqv3 
ds

* 

. (13) 
ds 

 

  ds  

From Equation 11, we can write:  

t = − SINH θ v1  + COSH θ v3   
(14)     

n = COSH θ v1  − SINH θ v3 ,    

 

α = β − λ v2 . (8) where  θ   is  the  angle  between  t   and v1 at  the 

  corresponding points of the curves of  α and β . By 

Since λ  is a nonzero constant, there is a timelike curve taking into consideration Equations 13 and 14, we get: 

β  for all values of λ .     
 

Now, we can give the following theorem related to curvature 

and torsion of the timelike-spacelike Mannheim partner curves. 
 
 

 

Theorem 3 
 

Let α,β be  a  timelike-spacelike  Mannheim  pair  in 

IR
3
 . If k is dual torsion of  α  and p  is dual curvature 
1 2   

and q  is dual torsion of  β  , then:  

k2  = − 
p 

. (9) 
λ q    

 

 

Proof 

 

By taking the derivate of Equation 7 with respect to s and 
applying the Frenet formulas, we obtain: 

 

SINH θ = −  1 + λ p 


ds 
* 

,   COSH θ = −λq ds
* 

. (15) 
  

  ds  ds  
      

 ds
* 

      
Substituting  into Equation 15 , we get:  

  

 ds       

SINH 
2
 θ = − 1 + λ p  , COSH 

2
 θ = λ 

2
 k 2 q. 

(16)         

 
From the Equation 16, we can write: 
 

k2  = − 
p 

. 
    

     

  λq     

Corollary 1     

Let 

 
be a  timelike-spacelike  Mannheim  pair  in α , β   

IR
3 

. Then, the product  of  torsions k and  q   at the 
1       2  
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corresponding points of the spacelike Mannheim partner curves 

are not constant.  
Namely, Schell’s theorem is invalid for the timelike-

spacelike Mannheim curves. By considering Theorem 3, we 

can give the following results. 
 

 

Corollary 2 

 

Let α,βbe a timelike-spacelike Mannheim pair inIR1
3
 

. Then, torsions k2 and q has a negative sign. 

 

 

Theorem 4 

 

Let α , β  be a timelike-spacelike Mannheim pair in IR1
3
 . 

Between the curvature and the torsion of the spacelike curve β 

, there is the relationship: 

 

µ q − λ p = 1 (17) 

 

where   and λ  are nonzero dual numbers. 

 

 

Proof 

 
 
 

 
 

 
k 2  = p COSH θ 

ds 
* 

− q SINH θ 
ds

* 

2. 
     

,  

ds 
 

       ds 

3. p = k 
 

COSH θ 
ds 

, 
  

2 ds
*   

        

4. q = k2  SINH θ 
ds 

. 
   

*    

    ds    

 

 

Proof 

 

1. By considering Equation 11, we can easily show that  t , 

v1  = SINHθ . Differentiating this equality with respect to s 

by considering Equation 1 , we have:   

t ′, v +  t , v 
′ 

= − SINH θ dθ , 
 

1 1  ds     
 

From Equations 1 and 2, we can write:  
 

k n, v + t , pv ds 
* 

= − SINH θ dθ 
  

  

11  
2
   ds  ds  

 

From Equation 15 , we obtain: 
 

SINH θ = COSH θ 
  

1 + λ p λq 

 

Arranging this equation, we get: 
 

TANH θ = 
1
 
+

 
λ
 
p 

 

 
From Equation 14, we get: 

 

 k  = − dθ . 
(18)  

1 ds  

  

 2. By considering Equation 11, we can easily show that 

 n, v2     = 0 . Differentiating this equality with respect to s 

 and by considering Equation 1, we have:  

λ q 

 

and if we choose µ = λ TANH θ 

that: µ q − λ p = 1 . 

 

 

Theorem 5 

 

n ′, v    +   n, v 
′ 
ds

* 
= 0 

 

2 2 

ds 
 

  
, 

for brevity, we will see 
  

    
 

From Equations 1 and 2, we can write:  

 

 k1 t + k 2 b , v 2  +  COSH θ v1  − SINH θ v 3 ,  − pv1  + qv3 

 
 
 
 
 

 

ds
* 

 
= 0  

ds , 
 

Let α , β  be a timelike-spacelike Mannheim pair in IR1
3
 . 

The following equations are for the curvatures and the torsions 

of the curves α and β 

 

1. k1 = − 
dθ

 

ds ,  

 

From Equations 14, we get: 

 

k 2   = p C O S H θ 
d s 

* 

− q S I N H θ 
d s 

* 

  

. 
d s 

 

   d s 

3. By considering Equation 14, we can easily show that  b, 

v1  = 0 . Differentiating this equality with respect to s   
and by considering Equation 1 , we have: 



 
 
 
 

b′, v   +  b, v 
′ 
ds

* 
= 0 , 

 

1 1 ds  

    

 

From Equations 1, 2 and 14, we can write:  

 

− k 2   C O S H θ  v 1  − S I N H θ  v 3   , v1     +   b ,  p v 2 

d s 
* 

=  0  

d s     ,      

p = k2 COSH θ 
ds 

. 
  

*   

  ds    
 

4. By considering Equation 11, we can easily show that b , 

v3  = 0 . Differentiating this equality with respect to s and by 

considering Equation 1, we have: 
 
 

 b ′, v3  + b , v3′ 
ds

*
 = 0. 

 
 
 

From Equations 1, 2 and 14, we can write:  
 

− k 2   COSH θ v1  − SINH θ v3 , v3    +  b , qv2 
ds

* 

= 0  

ds     
,      

q = k2 SINH θ 
ds 

. 
  

*   

  ds    
 
By considering statements 3 and 4 of Theorem 5, we can give 

the following results. 
 

 

Corollary 3          

Let α , β 


be a timelike-spacelike Mannheim pair  in 
              

IR
3 

.  Then,  there exist  the following  relation  between 
  1              

curvature and torsion of β  and torsion of α ;  

 2 

− q 
2 

= k 2 
2d s  2    

p 
  

 

   

. 
   

   *     

       d s       (19) 
               

Theorem 6          

A  timelike space  curve in IR
3
    is a timelike-spacelike 

             1   

Mannheim curve,  if  and  only  if  its curvature p   and 

torsion q  satisfy the formula:    

λ q 
2
  − p 

2
  = p       (20) 
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where λ  is never a pure dual constant. 

 

 

Proof 

 

By taking the derivate of the statement α = β − λV2 with 

respect to s and applying the Frenet formulas we obtain: 

 

t 
ds  

= v1 + λ  pv1 − qv3 
     

*       

 ds          ,      

   d s 2 d 
2
 s   

2   + λ  p 
′
v1  − q 

′
v 3  +  p 

2  2  v 2 . k 1 n 
   

 

+ t 
  

= p v 
 

− q 
 

d s 
* 

d s 
* 2   

              

 

Taking the inner product, which is the last equation with b , we 
get: 
 

λ  q 
2
  − p 

2
  = p . 

 

 

Theorem 7 
 

Let  α , β  be  a  timelike-spacelike  Mannheim  partner 
 

curves in IR1
3
 . Moreover, the points α  s  and β  s  be 

two corresponding points of 
 

and M and  M 
* 

be α , β  
 
the curvature centers at these points, respectively. Then, the 

ratio: 

 
   

( s ) M 
      

( s ) M 
*  

= 1 + k1 p 1 + λ p  ≠ CONSTANT.   β      β   
  

 ( s ) M 

    

: 
 

 ( s ) M 
* 

 

          

  α       α     

                     (21)  
 

 

Proof 
 

A  circle  that  lies in  the  osculating  plane  of  the  point 

α  s  on the timelike curve α  and that has the centre 

M = α  s  +  
1

  n  lying on the principal normal n  of the 
 k

1 

point α  s  and the radius 
1

 far from α  s  , is called  k
1 

osculating  circle  of  the  curve  α in  the  point α  s  . 
 
Similar definition can be given for curve β  too. 
 

Then, we can write: 

 
 

α   s  M 
 
 
 

=  1 n = 1 ,    
      

 

 

 

 

 

  
k 1  

k1     
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=   λ b + 
1 

v 2  =  
1 

 + λ , 
 

α  s  M 
*   

       

                    p      p 

 

β  s  M 
* 

    

= 

   

1 
v 2 

 

= 

 

1 

 

, 

  
   

 

 

     

 

  

    

          

 

β  s  M 

    

= 

    p   

1 

  p  

= 
1 

+ λ 

       

n 

 
  

  
 

 λ v 3   +  
   
       

                    k 1      k1 

Therefore, we obtain:         

 

β  s  M 

   

: 

 

β  s  M 
* 

  

= 

    

           
                          

 

α   s  M 
     

α  s  M 
*       

                 
                                  

1 + λ p  1 − λ 
2
 k1 

2
 ≠ C O N S T A N T . 

 

Thus, we can give the following. 
 

 

Corollary 4 

 
Mannheim’s theorem is invalid for the timelike-spacelike 

Mannheim partner curve α , β  in IR1
3
 . 

 

 
REFERENCES 

 

Azak AZ (2009). On Timelike Mannheim Partner Curves in 

L
3

 Sakarya University 

Faculty of Arts and Science, The Journal of Arts and Science, (11): 35-45.  
Do Carmo MP (1976). Differential Geometry of Curves and Surfaces, Pearson 

Education. New York: Academic Press.  
Guan Z, Guan, Ling J, Ping X, Rongxi T (1997). Study and Application of 

Physics-Based Deformable Curves and Surfaces. Computers and Graphics, 
21: 305-313. 

 
 
 

 
Kahraman T, Önder M, Kazaz M, Uğurlu HH (2011). Some Characterizations 

of Mannheim Partner Curves in the Minkowski 3-E 3  
space 1 . Proceedings of the Estonian Academy of Sciences, 60, 4, 210–220. 

Kuhnel  W  (1999).  Differential  Geometry:  Curves-Surfaces-Manifolds. 
Braunschweig, Wiesbaden.  

Liu H, Wang F (2007). Mannheim Partner Curves in 3-Space. Procedings of 
The Eleventh Int. Workshop on Diff. Geom., 11: 25-31  

Liu H, Wang F (2008). Mannheim Partner Curves in 3-Space, J. Geom., 88(1-
2): 120-126.3 

Orbay K, Kasap E (2009). On Mannheim Partner Curves in  E . Int. J. 

Orbay K, Kasap E, Aydemir İ (2009). Mannheim Offsets of Ruled Surfaces. 
Mathematical Problems in Engineering. Article Number: 160917. 

O’Neill B (1997). Elemantary Differential Geometry, 2nd ed. Academic Press, 
New York.  

Özkaldi S, İlarslan K, Yaylı Y (2009). On Mannheim Partner Curves In Dual 
Space. Analele Stiintifice ale Universitatii Ovidius Constanta. Seria 
Matematica. XVII, fasc. 2. 


