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The paper is aimed at presenting the differential equations for the cardiovascular system with the help 
of continuity equation of fluid mechanics to reduce the abnormality of the rate of blood flow and 
variation of blood volume in different parts of the system. The equations are used to explain the Frank-
Starling mechanism, which plays an important role in the maintenance of the stability of the distribution 
of blood in the system. This is a reasonable approach based on mathematical considerations as well as 
being further motivated by the observations that many physiologists cite optimization as a potential 
influence in the evolution of biological systems. We present a model as an application in the provision 
of a basis for developing information on steady state relations and also to study the nature of the 
controller and key controlling influences. The model further provides an approach for the study of 
complex physiological control mechanisms of the cardiovascular system and possible pathways of 
interaction between the cardiovascular and respiratory control systems. The study also provides an 
easy way for students of both physics and mathematical sciences, with no previous knowledge of 
human physiology, to understand the basic systems in cardiovascular concept. 
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INTRODUCTION 
 
In this paper, the concept of fluid mechanics are shown to 
be useful for the understanding of cardiovascular 
mechanics, exemplifying the fact that physics can play a 
fundamental role in the investigation of phenomena in 
human physiology. To properly understand the 
application of fluid mechanics (Falkovic, 2011) to human 
cardiovascular system (Hugh et al., 2005), it is necessary 
to make the assumption that the cardiovascular system is 
a closed system and also to describe the cardiovascular 
system itself (Dwivedi and Dwivedi, 2007). The 
cardiovascular system is a closed tabular system in which 
the blood is propelled by a muscular heart via two 
 
 

 
 

 
 
 

 
circuits: the pulmonary and systemic that consist of 
arterial, capillary and venous components (Dwivedi and 
Dwivedi, 2007; Mohammadali et al., 2009). It is a system 
that keeps life pumping through the body with its complex 
pathways of veins, arteries and capillaries (Mohammadali 
et al., 2009; West, 2008). The cardiovascular system 
consists of the heart, blood vessels and the circulatory 
system (Taylor et al., 1997). On the other hand, the heart 
is a muscular organ that provides a continuous blood 
circulation through the cardiac cycle. The heart is divided 
into four chambers: the two upper chambers called the 
left and right auricles and the two lower chambers called 
the left and right ventricles. There is a thick wall of 
muscles separating the right side and the left side of the 
heart called the septum. The heart consists of two large 
veins, the superior/anterior and the inferior/posterior 
vanae cavae, which bring red deoxygenated blood from 
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Figure 1. Diagrammatic representation of a flow tube with changing cross-
sectional area. If the fluid is incompressible, the product Av has the same 
value at all points along the tube. 

 
 

 
the various parts of the body with the exception of the 
lungs. The superior is located near the top of the heart 
while the inferior is located just beneath the superior 
(Taylor et al., 1997). The main function of the heart is 
therefore to pump blood round the tissue through systolic 
and diastolic processes triggered by the spontaneous 
discharge (Mathias and Andrew, 2011). These can be 
explained through electrical and mechanical activities of 
the heart (Massey and Ward-Smith, 2005; Falkovic, 
2011). These processes are therefore interesting not only 
for physics students, but also for students of the 
biological and medical sciences, because they illustrate 
the possibility of formulating theories in these areas; 
hence the justification for the present study. 
 
 
AN OVERVIEW OF CONTINUITY EQUATION 

 
One may need to know the idea behind the continuity 
equation of fluid mechanics before discussing it with 
respect to cardiovascular system. The mass of a moving 
fluid doesn’t change as it flows. This leads to an 
important quantitative relationship called the continuity 
equation. Zemasky (2005) considers a portion of flow 
tube between two stationary cross sections with areas A1 
and A2 (Figure 1). The fluid speeds at these sections are  
v 1 and v 2 , respectively. No fluid flows in or out across the 
 
sides of the tube because the fluid velocity is tangent to 
the wall of every point on the wall. During a small time  
interval dt , the fluid at A1 moves a distance v 1dt , so a 

cylinder of fluid with height v 1dt and volume dv1  

A1v1dt flows into the tube across A1. During this 

 
 

 

same interval, a cylinder of volume dv 2   A2v 2dt  flows 
 
out of the tube across A2. Let’s first consider the case of 
an incompressible fluid so that the density  has the 
 
same value at all points. The mass dm 1 flowing into the 

tube across A1 in time dt is dm 1  A1v1dt . Similarly, 

the mass dm 2 that flows out across A2 in the same time 

is dm 2  A2v 2dt . In steady flow the total mass in the 
 

tube is constant, so dm 1   dm 2 and 
 

A1v1dt  A2v 2dt or, continuity  equation, 
 

incompressible fluid:      
 

A
1

v
1  A2v2     (1.1)  

 

The product A v  is the volume flow rate 
dv

 dt , the rate 
 

         
at which volume crosses a section of the tube; volume 
flow rate 

 
dv 

 A v (1.2) 
 

   

 

dt 
 

   
 

 
The mass flow rate is the mass flow per unit time through 
a cross section. This is equal to the density (  ) times  

the volume of flow rate (
dv

 dt )  
Equation (1.1) shows that the volume flow rate has the 

same value at all points along any tube. When the cross 
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Figure 2. The cardiovascular system. 

 
 

 
section of a flow tube decreases, the speed increases, 
and vice versa.  
We can now generalize Equation (1.1) for the case in 

which the fluid is not incompressible. If 1 and 2 are 
 
densities at sections 1 and 2, then, the continuity 
equation, compressible fluid: 
 

 A v 
1 
  A v 

2 
(1.3) 

 

1 1 2 2  
 

 
 
Cardiovascular system 

 
Cardiovascular system consists of a double pump, the 
heart, and two distinct circulatory systems, i.e., systemic 
and pulmonary. The heart is divided into two parts, which 
are called the left and right hearts. Each has two 
chambers, the atrium and the ventricle, which periodically 
contract and relax. The relaxation and contraction are 
synchronized such that when the atrium is contracting, 
the ventricle is relaxing and vice-versa. The atrium 
receives and stores blood during the ventricular 
contraction, and blood flows from the atrium to the 
ventricle pumped by each heart per unit time is called the 
cardiac output (Williams and Ganong, 2005). The flow of 
blood through the system circulations depends on the 
contraction of the left ventricle, whereas the right heart 
drives blood through the pulmonary circulation, where 

blood is oxygenated and CO2 is disposed. A system of 
valve ensures that blood flows in the direction as shown 
in Figure 2.  

In Figure 2, QL is the cardiac output, QR right cardiac 

output, QS systemic nervous return and QP pulmonary 

 
 

 
venous return respectively.  

The cardiovascular system is regulated by both internal 
and external factors. The effectiveness of the regulation 
is manifested by the remarkable stability of the system. 
External factors including nervous activity and chemical 
substance called hormones, can affect the cardiac 
performance. There is an internal control mechanism, 
called the Frank–Starling mechanism that plays an 
essential role in the maintenance of the balance between 
the right and the left ventricular outputs and in the 
distribution of blood between the systemic and pulmonary 
circulation. A mathematical analysis of this control 
mechanism is essential for the thorough understanding of 
cardiovascular mechanics. 
 
 
MATERIALS AND METHODS 
 
Differential equation for the cardiovascular system 
 
Cardiovascular mechanics is based on the continuity equation and 
on the momentum equations for blood flow throughout the system. 
Because the cardiovascular system is very complex, idealizations 
and approximations are necessary. However, there are numerous 
mathematical models, which differ in the way the momentum 
equations are taken into account. In simple models, the momentum 
equation are taken into account by phenomenological equations 
that relate the pressure, volume, and the flow of blood in different 
parts of the system, and by parameters that depends on the blood 
viscosity and on the geometry and elastic properties of the vascular 
beds. In more complex models, Navier – Stokes equations are 
applied to the blood flow and numerically integrated for the 
assumed boundary conditions (t and t + T). In this paper, only the 
continuity equation was considered. This is because it is sufficient 
to explain a control mechanism of blood flow in cardiovascular 
system.  

Let V R
i
  t  be the instantaneous volume of blood contained in 
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the right heart at time t . The continuity equation can be written as 
 

 i t  / dt  Q i t Q i t (1.4)  
d V      

 R   S    R    
  

Where Q R
i
 t  is the systemic or right venous return, that is, the 

instantaneous rate of blood flow (in liters per minute) from the 

systemic circulation into the right atrium, and Q R
i
 t  is the 

 
instantaneous right cardiac output. The superscript i denotes 
instantaneous values.  
Also, the instantaneous volume of blood in the systemic circulation, 
in the left heart, and in the pulmonary circulation satisfies 
 

dV S
i
 t  / dt  Q L

i
  Q S

i
 t  (1.5) 

 

dV L
i
 t  

  Q P
i
 t  Q L

i
 t  (1.6) 

 

 dt   

         
 

dV P
i
  t   

 Q R
i
 t  Q P

i
 t  (1.7) 

 

 dt   
 

         
 

Where: Q L
i
 t  and Q P

i
 t  are the instantaneous left cardiac 

  
output and pulmonary venous return respectively. From (1.4) - (1.7), 
it can be deduced that: 
 

d V 
i
  V 

i
 V 

i
  V 

i
 
 
dt  0  dV , (1.8)  

  

 LR SP  dt   
 

       

 
which, expresses the conservation of total blood volume in the 
cardiovascular system.  
In steady state, the instantaneous left cardiac out is a periodic 
function of time and can be written as 
 

Q L
i
 t   Q L   f t  (1.9) 

 

Where: QL is the average value of the left cardiac output, given 
 

by:         
 

Q L 
 1  t T 

Q L
i
  t dt 

 
 

 
  

t 
 

(1.10) 
 

T 
 

 

       
 

        

 
which, is always constant in time and its value is one after 

integration. The periodic function f t  has an average value 
 
equal to zero; T is the cardiac period.  

It is observed that during transient phenomena, all the 
physiological variables in Equations (1.4) - (1.7) are not exactly 
periodic functions of time, and consequently, their average values in 
a given cardiac cycle are not necessarily equal to the corresponding 
values in another cycle. Thus, during transient phenomena, the 
average values of physiological variables depend 

 
 
 

 
on time.  

For transient phenomena, during which the physiological 
quantities have averages that are slowly varying functions of time, 
Equations (1.4) - (1.7) yield: 
 

dV R  
 Q S QR (1.11) 

 

 dt  
 

     
 

dVS  
 Q L QS (1.12) 

 

 dt  
 

 

     
 

dV L  
 Q P QL (1.13) 

 

 dt  
 

 

     
 

dV P  
 Q R QP (1.14) 

 

 dt  
 

     
 

 
In this approximation, the form of the equations for the average 
quantities is almost the same as that for the instantaneous ones. In 
the steady state, the time derivation on the left-hand side of 
Equations (1.11) - (1.14) are equal to zero, and hence, all rates of 
blood flow on the right-hand side have the same value.  

It is important to note that there must exists a control mechanism 
that maintains for long time a balance between the left and right 
cardiac output, because without such a mechanism the distribution 
of blood in the system would be unstable. For example, if the right 
cardiac output remained larger than the left one for a long time, an 
abnormal accumulation of blood in the pulmonary circulation would 
occur, whereas the systemic circulation would gradually be emptied 
of blood. The control mechanism that prevents this problem and 
maintains the stability of the blood distribution is known as the 
Frank–Starling mechanism. 

 
The ventricular function curve 
 
It is noted that in 1914, Starling used a canine heart – lung 
preparation to demonstrate that increasing the stretch on the 
ventricle of the mammalian heart during relaxation increases the 
pressure developed during contraction, as depicted by Frank in 
1895 where he used a ventricle of the frog heart to demonstrate a 
similar relationship. Starling found experimentally that there is a 
relation between cardiac output and right atrial filling pressure. The 
latter variable determines the degree of filling of the ventricle and 
may be regarded as a measure of the average blood volume in the 
heart. The experimental data obtained by Starling shows that the 
cardiac output first increases and then decreases when the right 
atrial filling pressure rises (William, 2005). The second part of the 
relation is called “the descending limb of the starling curve” and has 
been controversial. Because the right atrial filling pressure is a 
measure of the average volume of blood contained in the heart, 
Starling’s experimental results can be expressed by saying that 
cardiac outputs are functions of the average volume of blood  

contained in the respective hearts. The relations Q L   Q L  vL   

and Q R   Q R  vR  are called ventricular functions  or cardiac 
 
output.  

When subjects stand in the upright position, the ventricle clearly 
operates on the ascending limb of its function curve in a relatively 
steep region, and consequently, fluid administration can markedly 
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Figure 3. Ventricular function Q denotes cardiac output and v is blood volume in the heart. 

 
 

 
enhance pump function. In contrast, in the supine position, in which 
the subject lies float on hither back, the ventricle operates closer to 
the maximum of its function curve. Attempts to increase the filling 
volume lead to an increase in filling pressure, but only to modest 
improvement in ventricular performance (Uehara and Sakane, 
2002). 
 
 
RESULTS AND DISCUSSION 

 
The experimental observations show that the ventricular 
function is non-linear as illustrated in Figure 3, in which  
Q  represents QL   or QR , and v  represents vL   or vR . 
 
For simplicity, only one function is shown in Figure 4, but 
it should be noted that the two ventricular functions are 
not exactly the same (Uehara and Sakane, 2002). 
 
 
Relationship between the Frank–Starling mechanism 
and differential equations of the cardiovascular 
system 
 
The Frank–Starling mechanism or Starling’s law of the 
heart states that the stroke volume of the heart increases 
in response to an increase in volume of blood filling the 
heart (the end diastolic volume). The increase volume of 
blood stretches the ventricular wall, causing cardiac 
muscle to contract more forcefully (the Frank–Starling 
mechanism). The stroke volume may also increase as a 
result of greater contractility of the cardiac muscle during 
exercise, independent of the end-diastolic volume. The 
Frank–Starling mechanism appears to make its greatest 
contribution to increasing stroke volume at lower work 

 
 

 
rates, and contractility has its greatest influence at higher 
rates (Costanzo, 2007). This allows the cardiac output to 
be synchronized with the venous return, arterial blood 
supply and humeral length without depending upon 
external regulation to make alterations. In addition, the 
Frank-Starling mechanism plays an essential role in the 
maintenance of the balance between the right and the left 
ventricular outputs and in the distribution of blood 
between the systemic and pulmonary circulation (Uehara 
and Sakane, 2002; Mathias and Andrew, 2011).  

Before using Equations (1.11) - (1.14) to explain the 
control mechanism, it is interesting to consider one 
quantitative explanation that can be found in physiology 
textbooks (McGeon, 1996). It was reported that the most 
important intrinsic mechanism involved in the control of 
cardiac output is usually referred to as Starling’s law of 
the heart, or the Frank–Starling mechanism, after the two 
physiologist who first described it. Starling’s law helps 
explain two important features of cardiac function, 
namely that cardiac output equals venous return and that 
the average outputs from the two ventricles are equal. If 
venous return suddenly rises above ventricular output, 
blood will accumulate in the ventricle, increasing the end 
diastolic volume. Starling’s law predicts that this will lead 
to an increase in both stroke volume and cardiac output. 
Until a new state is reached in which cardiac output 
equals venous return again. Because the output from one 
ventricle is responsible for the venous return to the other 
side of the heart in the intact circulation, this mechanism 
will also ensure that the cardiac output from the two 
ventricles remains equal. For example, if the cardiac 
output from the left ventricle increases, this will increase 
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Figure 4. The Frank–Starling law of the heart. The three 
indicate a change in preload, while shifts from one line 
contractility. 

 
curves illustrate that shift along the same line to 
another indicate a change in after load or 

 
 

 
right venous return and right ventricular output will rise as  
a consequence.   

The   above   quantitative   explanation   can   be   
substantiated by a discussion based on Equations(1.11) - 
(1.14), and on the hypothesis that both hearts work on 
the ascending part of their ventricular function curves. 
Equations (1.11) - (1.14) yield 
 

 dv L 
 Q L  v L   Q R  vR   

 dvP 
, (1.15) 

 

  dt  dt  

         
 

 dvR  
 Q L  v L  Q R vR   

dvS 
. 
 

(1.16) 
 

  

dt 
   

 

      dt   
 

 
The blood volume distribution in the cardiovascular 
system depends on body posture relative to the 
gravitational field. For example, the average blood 
volumes in the pulmonary circulation and in the heart in 
the supine position are larger than in the upright position, 
because gravity induces redistribution of blood volume in 
the system (Grodins, 2001). Therefore, in a movement 
from sitting to supine position, there is a transient 
behaviour of the system during which the blood is 
redistributed between the pulmonary and systemic 
circulation according to Equations (1.15) and(1.16). 

 
 

 
A complete analysis of transient cardiovascular 
phenomenon would require the derivation of additional 
differential equations to describe the response of the 
pulmonary and systemic circulation to the perturbation of 
the system. In Equations (1.15) and (1.16) the circulation  

response is represented by the time derivatives, 
 dvP 

and   

dt 
 

     
 

 dvS . These quantities depends on the blood viscosity   

dt 
 

     
  

and on the geometry and elastic properties of the 
vascular beds, which are constituted by arteries and 
veins (McGeon, 1996). The number of required equations 
depends on the number of components of the pulmonary 
and systemic systems.  
If we assume that the vascular beds are rigid, Equations 
(1.15) and (1.16) can be reduced to: 
 

dvL  
Q L  v L   Q R  vR , (1.17) 

 

dt  
 

    
 

dvR  
 Q L v L   Q R  vR . (1.18) 

 

dt  
 

    
 

 
These equations contain only physiological quantities 



 
 
 

 
related to the heart, the active element of the system, and 
are useful in explaining the role of both hearts in the 
control mechanism. Mathematically, Equations (1.17) and 
(1.18) represent the core of the Frank – Starling control 
mechanism. The average cardiac outputs are implicit time 
functions with time derivatives given by: 
 

dQ L dQ L dvL       
 

 

   

    

      

           

dt 
 
dv L 

 
dt 

       
 

         
 

               (1.19) 
 

  dQL            
 

 

    

 Q  v R   Q 
L   v L  

 

    
 

  
svL 

  R     
 

             
 

 
 
 

 

dQ R dQ R  dvR       
 

 

   

   

      

          

dt 
   

dt 
      

 

 
dv

 R         
 

              (1.20) 
 

  dQR    v  Q  v   

       
 Q 

L  R   R   

    L       
 

  

sv
R           

 

Equations (1.19) and (1.20) yield:       
 

d Q  Q 
R               

dQL 
 

dQR 
 

 

  L    Q   Q       

       R      

  dt        L         dv   

                  dv 
L 

 

R 
 

 

                         
 

                           (1.21) 
 

        Q 
L 
 Q 

R    ,     
 

              T       
 

                           

Where:                         
 

 Q Q R   T  dQL   dQR        (1.22)  

 

      

       

 L         

dv 
         

 

         dv 
L 

  

R 
        

 

                       
 

 
If, due to a perturbation of the system, the left cardiac 
output becomes larger thank the right one, both outputs 
will vary in time and the difference between them will vary 
according to Equation (1.21). If both hearts work on the 
ascending part of the ventricular function curve, the  
 dQL dQR  

 

derivatives 

  

and 

 

will be positive and, in this 

 

 dvL dvR 
  

case, Equation (1.21) shows that the difference between 
left and right cardiac output will decrease in time until the 
steady state is again restored. The positive value of the  
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expresses the fact that the Frank – Starling mechanism is 
effective in restoring the steady state of the 
cardiovascular system. Furthermore, for positive values, 

the larger the value of , the faster the steady state is 
again attained. Therefore, , measures the effectiveness 
of the Frank – Starling mechanism.  

If  both  hearts  work  on  the  descending  limb  of  the  

ventricular  function  curve,  the  derivatives 
dQL 

and   

dvL 
 

      
 

 dQR will be negative and consequently, dv  , , will also  
 

L  

 

dvR 
   

 

     
  

be negative. In this case, Equation (1.21) shows that the 
difference between left and right cardiac output will 
increase with time and the Frank–Starling mechanism 
would be completely exhausted as a control mechanism, 

a fact expressed by the negative value of . Therefore, 
both hearts cannot work on the descending limb of the 
ventricular function curve.  

In the linear approximation, in which the time variations  
dQL  dQR            

 

of 

 

and 

    

are neglected, Equation (1.21) has 

 

dvL  dvR   
 

the solution:              
 

Q L  t  Q R  t            
,   Q L  0  Q R  0  

 
exp    

T 
 t   

             
 

 
Which, shows that for > 0, the transient duration is 
inversely proportional to .  

The above conclusions concerning the Frank–Starling 
mechanism were deduced without assuming a particular 
form for the ventricular function. This generality is 

important because the ventricular function (and ) varies 
from person to person, and from moment to moment, 
depending on the individual’s physical conditions. In spite 
of these variations, the control mechanism is able to 
maintain the stability of the system.  

If we assume, for simplicity, that the left and right 
ventricular functions have the same mathematical form, 
 
we can write

 Q L v L   Q vL 
and

 Q R v R   Q 

vR 
.
 Thus, for a steady state, Equation (1.22) reduces to: 

 

dQ   
 

 v   2T  
 

 (1.24) 
 

dv 
 

   
 

  
 

 
Because of the variability of , its numerical value is used 
to compare the cardiovascular system of different 
individuals, or of the same person under different 
physical and health conditions as an example, it is 
interesting to compare the congestive failing heart with 
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normal 
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Figure 5. Ventricular function curve for the normal and failing heart. 

 
 

 
the normal one. In the former, the cardiac muscle is 
weaker than the normal one. Research has shown that 
the ventricular function curve of the failing heart is 
depressed in comparison to the normal heart curve, and 
the failing heart works on a relatively flat part of the 
ventricular function curve. Because, of cardiovascular 
adaptive abilities, it is possible for cardiac output to be 
nearly normal, even though the cardiac muscle is 
severally diseased. However, to maintain normal cardiac 
output, the heart must dilate.  

These observations can be expressed mathematically 

 
 

 
where it was reported that the cardiovascular system 
manifests mechanical self-regulation. His model includes 
the elastic properties of vascular beds, and satisfies the  

conditions that  dQL 
and dQR 

must be positive.  

    

  dvL  dvR 
  

The mechanical self-regulation of the cardiovascular 
system is based on the fact that the left and right hearts 
are connected in series, and both hearts work on the 
ascending part of their ventricular function curve. 

 

by saying that 
dQ 

for the failing heart is smaller than the   

dt 
 

   
 

corresponding  value   for   the   normal   heart,   and 
  

consequently, , for the failing heart is small compared to 
the normal value. Figure 5 shows the ventricular function 
curve of the failing heart in comparison to the normal 
curve.  

In Equations (1.15) and(1.16), the derivatives 
 dvP 

and  

 

dt 
 

   
  

dvS 
represent  the  response  for  the  pulmonary  and  

dt 
 

 
  

systemic circulation to a perturbation of the system and 
depend on the geometry and elastic properties of the 
vascular beds and on the blood viscosity. Equations 
(1.17) and (1.18) were derived by assuming that 
 dv

 
P
  

dv
S
  0 , which neglect the elastic properties of dt 

dt 
the vascular beds (Grodins, 1999).  

The first mathematical description of the complete 
cardiovascular system was published by Grodins in 1966 

 
Blood volume re-distribution 

 
Since the heart operates like two pumps connected in 
series through the pulmonary and systemic circulations 
(Figure 2), its optimum for redistribution of blood volume 
in the system is described below (Figures 6 to 10): 
Consider a situation in which the subject moves from 
sitting to supine position. The cardiovascular system will 
show a transient behaviour during which blood will be 
redistributed between the systemic and pulmonary 
circulation (Dwivedi and Dwivedi, 2007; West, 2008). As 
noted, a complete analysis of the transient behaviour 
requires the derivation of additional differential equations. 
Although, Equations (1.15) and (1.16) do not constitute a 
complete set, interesting results can be derived from 
them as follows: 
 

d v L  v R  
2Q 

 
 2Q 

 
 

d v P  vS  
,   (1.25)     

L R 
    

 

dt 
 

dt 
 

       

        
 

 
If we integrate Equation(1.25), we have: 
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Figure 6. The time function s (t). T is the cardiac period. 

 
 

 

tF Q Q 

L  

dt  1    

F  

 v t  v t  v t   
     
  v   t   

tI    


 

R   2  P    P   I    S   F   S   I   
 

      1 v  v        
 

      

P S 
      

            

      2           
 

                   

                 (1.26) 
 

 
Where: tI and tF denotes the initial and the final instants 
of blood volume redistribution respectively (Figures 6 -
10). For a movement from sitting to supine position, the 
integral in Equation (1.26) is positive because the 
average blood volume in the pulmonary (systemic) 
circulation in the supine position is larger (smaller) than in 
the sitting position. Therefore, during the redistribution of 
blood (Figure 8) between the pulmonary and systemic  

Q R  t  must 
 

different from Q L t , Q R t  and Q L t  depend on 

how the subject move between the initial and final  

position, but the integral tF Q Q dt depends only 
 tI  R  L    
on variation of the volume of blood in the pulmonary and 
systemic circulation, as shown by Equation (1.26). The 

average  value  of  the  difference  between  Q R  t and 
 

Q L t , during a transient of duration  t F  tI is 
given by: 

 
 
 

 
The duration of the transient depends on how quickly or 
slowly the subject moves from one position to another.  
The faster the movement, the smaller the value of  . 

Hence,  cannot equal zero because as  0 , 

Q Q   , which is physiologically impossible. 
 

 R   L av        
 

Hence,   must  satisfy the  condition   
min  0 , 

 

          
 

where 


min is the  minimum  transient  duration,  which 

 

occurs when Q  Q  is a maximum. It is interesting 
 

     R  L av   
  

to note that this result was derived from the fact that in 
Equation(1.26), the integral depends only on the 
distribution of blood corresponding to the initial and final 
steady states, that is, it does not depend on how the 
subject moves from one position to another. Thus, for a 
movement from sitting to supine position, there is a 
minimum transient duration that depends on the 
characteristic of the heart vascular beds, as well as on 
blood viscosity, so that it is a measure of the  
min effectiveness   of   the   cardiovascular   system, 
 
considered as a whole, in restoring the steady state that 
was perturbed by the movement of the subject. Additional 
equations are necessary for a theoretical estimate of  
min , but it can be experimentally determined. The 

arterial blood pressure shows a transient behaviour when 

the subject moves from sitting to supine position, so that  
min  can be experimentally determined by observing this 

 
    

1 
     transient  behaviour for subject  movements at  different 

 

Q Q   v  v  (1.27) speeds (Figures 6 to 10).  

   

   

 R  L av  2  P  S   Because the physics of the cardiovascular system is  

          

 circulation,  the  function  necessarily  be 
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vL, vR(ml) 
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vL 

 
v0 < vm 

 
v0 t/T  

  

 

Figure 7. Blood volumes in the left and right heart,  vL and  vR , as time functions, initial 
 

volume v0 smaller than the volume vm corresponding to the maximum of the ventricular 

function. 
 
 

 
not discussed in physics textbooks, all the idealizations 
and approximations are clearly stated in this paper, so 
that it will be useful for teaching one way of doing 
physics. Due to its great complexity and idealized 
representation of the cardiovascular system is necessary 
for deriving differential equations for the blood flow. The 
idealized representation illustrated in Figure 2 is very 
simple, but it is sufficient for the derivation of blood flow in 
the system. It would be interesting to compare the 
idealized representation in Figure 2 with the real anatomy 
of the cardiovascular system to stressing the drastic 
simplification used in our treatment.  

The reason for taking the average of Equations (1.4) – 
(1.7) is to simplify the mathematical discussion, which is 
much simpler in terms of average quantities. For 
example, in the steady state, the time derivatives of the 
instantaneous blood volumes in the left and right heart, 

dv
i
     dv 

i
  

 

 L 
 and   R ,  are functions of  time, whereas for the  

 

dt 
 

dt 
 

       
 

average blood we have: 
 

dvL  
 

dvR 
 0  

 

dt 
   

dt 
 

       
 

 
The averaging process, which in this case was 
accomplished by approximation, represents a great 
simplification of the mathematical description.  

Equations (1.17) and (1.18) were derived from 
Equations (1.15) and (1.16) assuming that 
 dv

 
S
  

dv
P
  0 . This assumption described the limiting dt 

dt  

 
 

 
case in which the elastic properties of the vascular beds 
are neglected. The study of “Limiting cases” was 
considered to be one of the most useful and educational 
things we can do with any equation. In our treatment, the 
study of the limiting case made possible an analytical 
discussion of the Frank–Starling mechanism in which it 
was not necessary to assume a particular form for the 
ventricular functions, a generality that is important 
considering that the ventricular function varies from 
person to person, and from moment to moment.  

It is also noted that the output from one ventricle is 
responsible for the venous return to the other side of the 
heart (Mc. Geon’s 1996). This statement is expressed 
mathematically by Equations (1.12) and (1.14), which  

more precisely show that the venous return Q S  QP  is 
 

related not only to cardiac output Q L QR , but also to 

the time derivative of the volume of blood in the systemic  

 dv S dvP  
 

(pulmonary) circulation   

  

 . In the steady state,  

    

  dt  dt  
 

     

    
  

and also in the limit in which vascular beds are assumed 
to be infinitely rigid, these times derivative are equal to  
zero, and consequently, Q L  QS and Q P  QR . If the 

systemic venous return QS suddenly rises above the 
 
right  cardiac  output QR  ,  blood  will  accumulate in  the 
 
heart, as can be seen from Equation (1.11) with respect 
to the relationship between cardiac output and blood 
volume in the heart, this increase of blood volume in the 
right heart will lead to an increase in the right cardiac 
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Figure 8. Left and right cardiac outputs QL and QR , as time functions; v 0  vm (initial 

heart operating on the ascending part of the ventricular function curve). 
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Figure 9. Blood volumes in the left and right heart,  vL  and  vR , as time functions, 
 

initial volume v0 larger than the volume vm corresponding to the maximum of the 

ventricular function. 
 
 

 
output until a new steady state is reached in which the 

cardiac output QR equals the nervous return QS again. 
 

The experimental observation that there is a relation 
expressed by the ventricular function between cardiac 
output and the volume of blood in the heart is essential 
for explaining the auto-regulation of the system. Because 
there is as yet no theory that derives the ventricular 
function from first principles, this function was included in 
Equations (1.15) and (1.16) as expressing experimental 
data. The inclusion of an empirical relation illustrates the 
formation of a phenomenon of logical theory that contains 
elements based on experimental observation that are 

 
 

 
waiting for a more fundamental explanation (Uehara and 
Sakane, 2002). 
 
 
Conclusions and recommendations 

 
The present work describes the application of the 
continuity equation to the rate of blood flow and variation 
of the volume of blood in different parts of the 
cardiovascular system in conjunction with physiological 
observations has provided a set of differential equations 
that are useful for clarifying the essential points of the 
Frank–Starling mechanism. The basis hypothesis for 
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Figure 10. Left and right cardiac outputs QL andQR , as time functions; v 0  vm (initial heart 

operating on the ascending part of the ventricular function curve) 
 
 

 
explaining this mechanism is that the heart operates like 
two pumps connected in series through pulmonary and 
systemic circulation (Figure 2). There is a relationship 
expressed by the ventricular function between cardiac 
output and blood volume contained in the heart. Both 
hearts work on the ascending part of their respective 
ventricular function curves; and the total blood volume in 
the cardiovascular system is constant. There is need for 
extension of this work in order to derive more differential 
equations that will explain different complex models used 
in cardiovascular system. 
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