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This paper applies the CBP-GARCH model of Chan (2003) to analyze the discontinuous jump and the time-varying 
correlated jump intensity for the changes in the VIX and the S&P 500 returns over the period extending from January 
15, 2001 to December 31, 2009. The empirical results provide evidence of the significant jump-diffusion process and 
the causal relationships in the bi-directions between the S&P 500 returns and the changes in the VIX. In addition, the 

relationships between the S&P 500 returns and the changes in the VIX exhibit joint jump behavior are not time 
varying. 
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INTRODUCTION 

 
The CBOE market volatility index (hereafter, VIX) is a 
measure of the market’s expectations regarding a 30 day 
implied volatility index.  

In 1993, the Chicago board options exchange (hereafter, 
CBOE) introduced the CBOE Volatility Index, VIX, which 
comprises at-the-money S&P 100 index option prices. In 
2003, the CBOE employed a new VIX based on the S&P 
500 index that averages the weighted prices of the S&P 500 
index puts and calls over a wide range of strike prices. On 
March 24, 2004, the CBOE introduced the first exchange-
traded VIX futures contract on its new, all-electronic CBOE 
futures exchange. In February 2006, the CBOE launched 
VIX options and, as a result, in less than five years the 
combined trading activity in VIX options and futures has 
grown to more than 100,000 contracts per day (see the 
CBOE White Paper, 2009). The VIX also serves as an 
“investor fear gauge” that is a measurement index of the 
price variations and is widely discussed by both academics 
and practitioners (Whaley, 2000; Simon, 2003; Giot, 2005; 
Badshah, 2009; Whaley 2009). In addition, many studies 
have found evidence of a strong negative and asymmetric 
relationship between returns and the changes in the volatility 
index (Fleming et al., 1995; Whaley, 2000; Simon, 2003; 
Low, 2004; Giot, 2005;  
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Selcuk, 2005; Dennis et al., 2006; Hibbert et al., 2008; 
Badshah, 2009). Accordingly, the observation and appli-
cation of the VIX is a non-negligible topic in the financial 
field. Therefore, the need to speculate and hedge against 
the changes in volatility has motivated the rapid growth of 
the volatility derivatives markets in recent years. As regards 
applying the VIX to engage in arbitrage or hedging activities, 
we utilize the GARCH series model to analyze the short-
term dynamic behavior between returns and changes in the 
volatility index.  

Jorion (1988), Bakshi et al. (1997) and Das and Sundaram 
(1999) have pointed out that if models neglect discontinuous 
jump characteristics, they will give rise to mispricing. Hence, 
it is important to incorporate discon-tinuous jump 
characteristics into the models. As a result, Chan and 
Maheu (2002), Pan (2002), Eraker et al. (2003) and Maheu 
and McCurdy (2004) apply the jump model to analyze the 
stock or option markets; however, they fail to provide an in-
depth discussion of the jumps in volatility markets. More 
recently, a number of studies have paid attention to the jump 
model to analyze the implied volatility index. Wagner and 
Szimayer (2004) are the first to investigate the jump 
characteristics in the implied volatility index by estimating the 
mean-reverting jump-diffusion process, and they conclude that 
there are significant positive jumps in implied volatilities. Dotsis 
et al. (2007) find that the jump-diffusion model performs best; in 
addition, they argue that the joint modeling of the implied 
volatility index and the corresponding stock index 



 
 
 

 

deserves to be a topic for future research. Becker et al. 
(2009) also discuss jumps in the VIX and their findings 
indicate that the VIX reflects past jump activity in the S&P 
500 index and that the VIX forecast errors are indeed 
uncorrelated with information available in the past that is 
related to jump activity. Unfortunately, so far, the existing 
empirical literature only seems to consider the single 
jump-diffusion model but not joint jump-diffusion models, 
so that they can not together analyze the causal 
relationships in both directions between the implied 
volatility index and the stock index. In order to overcome 
this shortcoming, it is therefore necessary for future 
research to consider a joint modeling to investigate the 
relationships between the implied volatility index and the 
corresponding stock index.  

Accordingly, the purpose of this paper is to contribute to 
exploring the joint jump-diffusion activity both for the 
changes in the VIX and the S&P 500 returns and their 
special causal relationships. Based on a comparison of 
the models, we confirm that the best specification is a 
correlated bivariate Poisson jump model of Chan (2003, 
CBP-GARCH model hereafter), and then apply it to 
perform a further empirical analysis. It is an extension of 
a model with multivariate GARCH parameterization that 
includes a bivariate correlated jump process and a 
correlated bivariate Poisson function to examine the 
dynamic relationships between the changes in the VIX 
and S&P 500 returns. With respect to the relevant 
applications of CBP-GARCH model, Lee and Cheng 
(2007) employed the CBP-GARCH model to investigate 
the relationship between the volatility of crude oil and 
gasoline especially during the period of the Gulf War. In 
addition, Chiu and Hung (2007) investigated normal and 
abnormal information transmissions by using CBP-
GARCH model to examine diffusion volatility and jump 
intensity spillovers in China's stock markets. Therefore, it 
has the following three advantages in this study. First, it 
can examine whether the changes in the VIX and S and 
P 500 returns exhibit significantly negative or positive 
return-volatility relationships regardless of the impact of 
changes in the VIX on S&P 500 returns or the impact of 
the S and P 500 returns on the changes in the VIX. This 
model efficiently incorporates both the additional lagged 
variables of the S&P 500 returns and changes in the VIX, 
respectively, so that this study can adequately describe 
how the current S&P 500 returns and the current changes 
in the VIX are affected by both of the lagged variables in 
this model. Bollerslev and Zhou (2006) have pointed out 
that the volatility feedback effect refers to the impact of 
the contemporaneous volatilities on the returns, and the 
leverage effect refers to the impact of the lagged returns 
on the current volatilities. In addition, Bollerslev et al. 
(2006) indicate that the causal relationships for the two 
effects are indistinguishable, are often inconclusive and 
sometimes lead to the conflicting results reported in the 

extant literature. Meanwhile, we also examines whether the 
CBP-GAECH model is consistent with the extrapolation bias 
behavior theory of Hibbert et al. (2008). 

 
 
 
 

 

Hibbert et al. (2008) mention that past changes in implied 
volatilities affecting current changes in implied volatility 
are consistent with the extrapolation bias behavioral 
theory, as investors would expect volatility changes to 
maintain a trend in the near future. In addition, Shefrin 
(2008) proposes an example to describe the extrapolation 
bias, namely, that U.S. home prices rose by about 85 
from 1997 to 2006. Because of this extrapolation bias, the 
sentiment of many people was that housing prices would 
continue to increase by about 10 percent each year. 
Hence, it is fair to describe this as a bubble. When the 
prices did not continue to increase, the bubble burst, as 
evidenced by the decline in housing prices by more than 
15% between June 2007 and June 2008. Consequently, 
this result led to the global financial crisis in 2007-2009. 
This study thus argues that, if changes in implied volatility 
really represent “mean reverting” behavior but not 
investors’ cognition, then this is so-called extrapolation 
bias in volatility markets. Secondly, CBP- GAECH model 
investigates whether both the changes in the VIX and 
S&P 500 returns exhibit jump-diffusion activity and co-
movement jump behavior. Finally, CBP-GAECH model 
further confirms whether the S&P 500 returns lead to the 
changes in the VIX or whether the changes in the VIX 
lead the S&P 500 returns. 
 

The remainder of this article is organized as follows. 
Section II describes the data and the econometric model. 
The empirical results and conclusions are reported in 
section III and section IV, respectively. The final section 
contains our discussion. 
 

 
DATA AND THE CBP-GARCH MODEL 
 
The data used are the daily S&P 500 index and the VIX of the 
CBOE, and cover the period from January 15, 2001 to December 
31, 2009. All daily data are obtained from Cmoney. The S&P 500 
returns and the changes in the VIX are defined as 

rsp,t   ln pt   ln pt 1 100 and 

rvix,t   lnVIX t  lnVIX t1 100 , respectively, where pt  is  

the S&P 500 index and VIXt  is the VIX index. This paper applies 
 
the CBP-GARCH model of Chan (2003) to investigate the 
relationships between the S&P 500 returns and the changes in the 
VIX, which both postulate that the jump intensity obeys an ARMA 
process and incorporates the GARCH effect of the series. This 
model can adequately capture the diffusion volatility and jump 
intensity spillover effects between the S&P 500 returns and the 
changes in the VIX. For the purpose of examining whether there are 
jump-diffusion processes as well as the causal relationships in the 
bi -directions between the S and P 500 returns and the changes in 
the VIX, the CBP-GARCH model is described as follows: 
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Where rsp,ti  ( rvix,t i ) denotes the S&P 500 returns (the changes 
 

in VIX) on day t-i, i=0, 1, 2.  sp,t ( vix,t ) is a error term and J sp,t 

( Jvix,t ) is a jump component for rsp,t  ( rvix,t ). The error term and 

the jump component are assumed to be independent, that is, 
E(

 sp,t 

,
 

J
sp,t 

)
 


 

0
 and E(vix,t , Jvix,t )  0 .  The  error  term 

 sp,t  (  vix, t ) has a bivariate normal distribution with zero mean
 

and conditional covariance matrix Ht ; besides, the jump 

component J sp,t ( J sp,t ) also has a bivariate normal distribution 

with zero mean and conditional covariance matrix t . In a bivariate 

framework, the jump component is defined as: 
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WhereY1t ,i (    Y2t ,i ) denotes the summation of n jumps or 
 

 i1 j1     
 

the jump intensity for 

r
sp,t ( rvix,t ) over any period t. In addition, 

 

each stochastic variable Yit follows a normal distribution with mean 
 

 for its intercept term and variance i
2
 ; in other words, the 

bivariate jump intensities can be described as:
 

Y ~ N ( , 
2
 ) and  Y ~ N ( 

2 
, 

2
 ) (4) 

 

1t ,i 1   1 2t , j  2  
 

 

In equation (3), the variables n1t and n2t both denote individual 

counting variables of jump intensity in that the two variables are 

constructed by the independent Poisson variables, namely, n1
*
t ,  

n2
*
t and n3

*
t . Each one of these variables has a probability 

density function given by: 
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The expected values and variances of n


it  are each equal to i ,  
which is also referred to as the expected number of jumps or the 

jump intensity. The correlated jump intensity counters (M’Kendrick, 

1926; Campbell, 1934) are defined as: 
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By construction, each of these counting variables, 

n
1t or n2t , is 

capable of generating independent jumps as well as correlated 

  
  

 
 

 

jumps. The independent jumps are initiated by n1
*
t and n2

*
t in 

time period t. The correlated jumps are produced by the additional 

Poisson variable, n3
*
t , which contributes jumps to both series. 

 
Using the change of variables method and integrating out n3

*
t 

 

yields the joint probability density for n1t and n2t  as:  
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And the expected number of jumps is equal to     
 

E(nit )  i  3        (8) 
 

 

According to Chan (2003), the jump intensity parameter it is the 

time-varying jump intensity, i = 1, 2, 3, and it is defined as: 
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Where rsp,t1 and rvix,t1 denote the rates of return for the S&P 

500 index and the changes in the VIX at time t 1 , respectively. 

The individual jump intensities 1t ( 2t ) are assumed to be 

related to market conditions which are reflected in r 
2
   ( r 

2
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sp,t  1 vix,t  1  
as an approximation of last period’s volatility. Similarly, the 

covariance 3t is governed by the variations in the last period’s 
 
volatilities from both series. 

Combining  the  GARCH  model  with  the  CBP  function,  the 

probability density function both for  
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Where  X t  denotes  rsp,t and  rvix,t ; and 

u
ij ,t is the usual error 

 

term with the jump component Jij ,t . Hij,t is the covariance matrix of  

rsp,t  and rvix,t . Under the normal disturbance, t , is independent 

of  the  jump  component, and Hij,t ,  is  the summation of  the 
   ~   

covariance matrix for the normal disturbance H t and the jump 



 
 
 

 

component ij,t . 
~  

The covariance matrix for the normal disturbance H t is defined 
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notably, 12  denotes the diffusion correlation coefficient.  

The covariance matrix for the jump component ij,t  is derived 
 
from the assumption that the correlation between the jump sizes is 

constant across contemporaneous equations and zero across time: 
 

Corr(Y1t ,Y2t )  12 and Corr(Y1t ,Y2s )  0 where t  s (15) 
 

Therefore, the covariance matrix for the jump component ij,t  can 
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Where parameter  


12 denotes the jump correlation 
 

coefficient of Y1  and Y2 . The covariance matrix of the CBP- 
 

           ~  
 

GARCH model is indicated by the summation of Ht  and  ij ,t . 
  

Finally, to complete the specification, the conditional density 

function is defined as: 
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The log likelihood function is simply the sum of the log conditional 

densities: 
 

N  

ln L    ln P( X t t 1 ) (18)  
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Since the information matrix is not a block diagonal matrix, 
evaluation of the full likelihood is required. To estimate the CBP-
GARCH model, a truncation point must be selected for the 
probability function in equation (17). We choose a truncation point, 
which is sufficiently large so that the likelihood function and 
parameter estimates stabilize as a set of converged values. Of 
course, this paper will try to compare the models to confirm that the 
CBP-GARCH model fits. Thus, when not taking jump variables in  
account (setting  

1 =2 = 1 = 2 = 12 = 1 = 2 = 3 =1 =2 =3 =4 =0),

 the  
CBP-GARCH model will reduce to a bivariate GARCH model 

(hereafter, the BGARCH model). 

 
 
 
 

 

EMPIRICAL RESULTS 
 

Table 1 presents the descriptive statistics for rsp,t and 

rvix,t during the research period. The sample mean and 

 

standard error of rsp,t ( rvix,t ) are -0.0088 (-0.0019) and 

1.4065 (6.0118), respectively, implying that the volatility 

of rvix,t is larger than that of rsp,t . In addition, the statistics 
 

show that rsp,t and rvix,t both have leptokurtic 
 
distributions and fat tails because their skewness, 
kurtosis (excess) and JB-test measures are highly 

significant at the 5% level. As to the Ljung–Box Q (Q
2
)  

statistics for rsp,t and rvix,t , both have five lags and are 

significant at the 1% level. These indicate that both rsp,t 

and rvix,t exhibit autocorrelation, linear dependence and 
 
strong ARCH effects. 

Table 2 presents the estimated results of the BGARCH 
model and the CBP-GARCH model. The CBP-GARCH 
model of Table 2 reveals that the statistical significance of 
the coefficients is rather similar to that of the BGARCH 

model. By testing the Q(5) and Q
2
(5) statistics, the 

BGARCH and CBP-GARCH models are both statistically 
insignificant, indicating that neither of the two models 
exhibits autocorrelation of the residuals nor conditional 
heteroskedasticity. In addition, this paper employs a 
likelihood ratio test to compare the CBP-GARCH model 
with the BGARCH model. We find that LR = 304.2394 
which is significant at the 1% level, thus revealing that the 
CBP-GARCH model is better than the BGARCH model in 
terms of its statistics. Therefore, this paper will conduct 
further empirical analyses by using the CBP-GARCH 
model. 

The parameters   11 = -0.1014 and  13  = -0.0094 are  
significant, indicating that the current S&P 500 returns is 
negatively influenced by both the lagged-one S&P 500 
returns and changes in the VIX, but not by both the 
lagged-two S&P 500 returns and changes in the VIX. 
These findings not only demonstrate the significantly 
negative relationships of lagged return-volatility but also 
reveal the negative impact of the lagged-one returns on 
the current returns. This paper provides support of the 
negative lagged return-volatility relationships, that is, the 
current returns, are negatively correlated with the lagged-
one changes in the VIX. The empirical result is consistent 
with the views of negative return-volatility relationships in 
most of the literature.  

The parameter  21 = -0.0504 is significant, indicating  
that the current changes in the VIX are negatively 
influenced by the lagged-one changes in the VIX, this 
finding implying consistency with the extrapolation bias 
behavior theory of Hibbert et al. (2008). In addition, the  

parameters 23= 0.1703 and24= 0.2204  are  also 



  
 
 

 
Table 1. Descriptive statistics.   

 Index 
r

sp,t 
r

vix,t  

  
 

 Sample mean -0.0088 -0.0019 
 

 Standard error 1.4065 6.0118 
 

 Skewness -0.1240** 0.6194*** 
 

 Kurtosis (excess) 8.3266*** 4.4771*** 
 

 Jarque-Bera 6447.8557*** 2005.0846*** 
 

 Q(5) 47.5150*** 44.1200*** 
 

 Q
2
(5) 111.2850*** 111.2850*** 

 

 
Note ** and *** denote significance at the 5% and 1% levels. The Jarque-
Bera statistic is used to determine whether the data come from a normal 

distribution. Q and Q
2
 are Ljung-Box Q test statistics for serial correlation in 

the standardized residuals and squared standardized residuals, respectively. 
 

 

significant, indicating that the current changes in the VIX 
is positively influenced by both the lagged-one and 
lagged-two S&P 500 returns. Hence, these findings seem 
to be consistent with the views of Ghysels et al. (2005), 
Bali and Peng (2006) and Lundblad (2007). They 
consistently suggest a significant positive risk-return 
trade-off relationship.  

In terms of the conditional variance equations, the 1  

1 (2  2 ) is 0.9876 (0.9393), indicating a strong 

GARCH effect and persistence of conditional variance for 

rsp,t ( rvix,t ). This implies that any exogenous fluctuation 
 
will together impact the S&P 500 returns and the changes 

in the VIX, thus giving rise to volatility impact effects both  

for rsp,t and rvix,t . In addition, both the jump intensity and 

size parameters are significant, that is, the rsp,t and rvix,t 

exhibit jump behavior. Therefore, the Poisson jump com-
ponents play a critical role in modeling the S&P 500 
returns and the changes in the VIX.  

Moreover, the diffusion correlation coefficient 12 

0.8354 and jump correlation coefficient 12 0.7790 ,  
respectively. They both present a significant correlation 
and negative interactions with S&P 500 returns and the 
changes in the VIX.  

The parameters 1 and 2 ( 1 and 2 ) are the means 

and standard errors of the jumps, respectively, and most 

of them are statistically significant, except for 1 . These  
exhibit abnormal information which will cause the average 

of the jumps to be about -0.1431 and 3.52898 and the 

standard error of the instantaneous jumps to be about 
0.8691 and 5.7124 for the S&P 500 returns and the 

changes in the VIX, respectively. Owing to 1 < 2 , this  
result thus reveals that the changes in the VIX give rise to 
more risk of jumps. 

The individual jump intensity parameters  1 and   2  
are statistically insignificant, except for the joint jump 

intensity parameter  3 . These findings imply that there 

 
 

 

only exists joint jump behavior for the S&P 500 returns 
and the changes in the VIX, and no single jump behavior  

is found to exist. In addition, the total parameters 1 , 2 , 

3 and 4 are statistically insignificant, revealing that the 

joint jump intensity parameter 3 is not related to market 

conditions and is not reflected in r 
2
   ( r 

2
    ). In other  

sp,t  1 vix,t  1  
words, these findings imply that only joint jump behavior 
exists, but it does not follow that the S&P 500 returns and 
the changes in the VIX are times varying.  

Finally, we employ the Granger causality test to 
examine whether the S&P 500 returns and the changes 
in the VIX have lead or lag causal relationships with each 
other. If the impact of changes in the VIX on S&P 500 
returns is statistically significant, this indicates that the 
lagged changes in the VIX will affect the current S&P 500 
returns. Likewise, if the impact of S&P 500 returns on the 
changes in the VIX is statistically significant, this indicates 
that the lagged S&P 500 returns will affect the current 
changes in the VIX. Consequently, the test statistics are 
5.0968 and 6.9445, respectively. Thus, the empirical 
results indicate that they are both statistically significant 
regardless of whether the changes in the VIX has an 
impact on the S&P 500 returns or the S&P 500 returns 
has an impact on the changes in the VIX. These findings 
imply that there are bi-directional causal relationships 
between the S&P 500 returns and the changes in the 
VIX; thus, the empirical findings are similar to those of 
Bollerslev et al. (2006) regarding leads or lags in the 
returns and the implied volatilities. 
 

 

Conclusions 

 

This study utilizes the CBP-GARCH model to investigate 
whether the S&P 500 returns and the changes in the VIX 
are characterized by negative or positive correlations, 

jump-diffusion process or special causal relationships. In 
addition, this analysis also compares the BGARCH model 



 
 
 

 
Table 2. The estimation results for the BGARCH and CBP-GARCH models.  

 
 BGARCH model   CBP-GARCH model  

Parameter coefficient Standard error Parameter Coefficient Standard error 


10 0.0534 *** 0.0295 


10 0.0491 *** 0.0158 


11 -0.1055 *** 0.0017 


11 -0.1014 *** 0.0262 


12 -0.0407 *** 0.0016 


12 -0.0271  0.0246 


13 -0.0092 *** 0.0017 


13 -0.0094 ** 0.0042 


14 -0.0036  0.3868 


14 -0.0016  0.0039 


1 0.0059 *** 0.5346 


1 0.0017  0.0015 

1 0.0637 *** 0.0020 1 0.0669 *** 0.0065 

1 0.9334 *** 0.0118 1 0.9207 *** 0.0069 


20 -0.2226 *** 0.0292 


20 -0.1877 * 0.0971 


21 -0.0724 ** 0.2771 


21 -0.0504 ** 0.0243 


22 -0.0058  0.0195 


22 -0.0201  0.0244 


23 0.1533  0.0066 


23 0.1703 * 0.1020 


24 0.2875 *** 0.0128 


24 0.2204 ** 0.1051 

2 1.7183 *** 0.0133 2 1.0092 *** 0.2195 

2 0.0573 *** 0.0114 2 0.0543 *** 0.0078 

2 0.8923 *** 0.0134 2 0.8850 *** 0.0160 


12 -0.8156 *** 0.0064 


12 -0.8354 *** 0.0091 

    


1 -0.1431  0.0934 

    


2 3.2898 *** 0.6566 

    1 0.8691 *** 0.0977 

    2 5.7124 *** 0.5477 

    


12 -0.7790 *** 0.0438 

    1 0.0000  0.1906 

    


2 0.0000  0.0884 

    3 -0.4263 *** 0.0367 

    1 1.1*10
-7

  0.0434 

    2 -4.7*10
-7

  0.0255 

    


3 -3.2*10
-7

  0.0378 

    


4 -1.5*10
-7

  0.0152 
Log-likelihood value  -9108.5024    -8956.3827  

 
Granger causality test   

VIX causes S and P 500 4.8576* VIX causes S&P 500 5.0968* 

S and P 500 causes VIX 5.8081* S&P 500 causes VIX 6.9455* 

    



 
 
 
 

 
Table 2. Cont’d.  

 
Diagnostics on standardized residuals  

Qsp (5) 2.8210 Qsp (5) 3.3790 

2 7.8210 2 5.8470 

Qsp (5)  Qsp (5)  

Qvix (5) 6.2470 Qvix (5) 7.4660 
2 0.3540 2 0.1530 

Qvix (5)  Qvix (5)   

Note: *, ** and *** denote significance at the 10, 5 and 1% levels. Qsp ( Qvix ) and Qsp
2

 ( 

Qvix
2

 ) are Ljung-Box Q tests for the serial correlation of rsp,t ( rvix,t ) in the standardized 

residuals and squared standardized residuals, respectively. 

 
 
 

with the CBP-GARCH model. 
The empirical results reveal several findings regarding 

the relationships between the S&P 500 returns and 
changes in the VIX. First, our empirical results confirm 
that the CBP-GARCH model is better than the other 
models and that it can adequately describe whether the 
current S&P 500 returns and changes in the VIX are 
affected by both the lagged changes in the VIX and S&P 
500 returns. For instance, these results have provided 
evidence of the negative relationships for the impacts of 
both the lagged-one returns and changes in the VIX on 
the current returns, implying consistency with the 
negative return-volatility relationships in most of the 
literature and describing the negative impact of the 
lagged-one returns on the current returns. In addition, the 
negative relationships for the impact of the lagged-one 
changes in the VIX on the current changes in the VIX 
imply consistency with the extrapolation bias behavior 
theory of Hibbert et al. (2008). 

Furthermore, the positive relationships for the lagged-
one and lagged-two returns also impact the current 
changes in the VIX, implying consistency with the positive 
risk-return relationships (Ghysels et al. 2005; Bali and 
Peng, 2006; Lundblad, 2007). Second, the diffusion and 
jump processes exhibit significant correlations and 
negative interactions with the S&P 500 returns and the 
changes in the VIX. This implies that there is a strong 
GARCH effect and persistence in the conditional variance 
between the S&P 500 returns and the changes in the 
VIX. Moreover, this study finds that the changes in the 
VIX lead to more risk of jumps than the S&P 500 returns. 

In addition, the relationships between the S&P 500 
returns and the changes in the VIX only exhibit joint jump 
behavior and are not time varying. Finally, this paper 
finds that there are bi-directional causal relationships 
between the S&P 500 returns and the changes in the 
VIX, similar to the viewpoint of Bollerslev et al. (2006) 
regarding the leads or lags in returns and their implied 
volatility. Therefore, this paper argues that the volatility 
transmissions are influenced by both the lagged S&P 500 
returns and changes in the VIX. 

 
 
 
 
DISCUSSION 

 

According to the empirical finding that it only exits joint 
jump behavior, this paper hence argues that if the market 
gives rise to fluctuations, then it will simultaneously 
impact the S&P 500 returns and the changes in the VIX. 
In addition, owing to the evidence of bi-directional causal 
relationships, then the current S&P 500 returns and the 
current changes in the VIX will be related to the lagged 
counterpart factor for the S&P 500 returns (the changes 
in the VIX).  

Therefore, according to above descriptions, this study 
provides an advice that, when the institutions or investors 
apply the VIX to engage in arbitrage or hedging activities, 
ought to monitor the simultaneous informational impact 
on spot market and option market in order to arrange the 
efficient strategies of investment. As to the future 
research issue, this study suggests that examining the 
informational content of forecast errors regarding jump 
characteristics will be a subject of future research and 
discussion. 
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