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In this paper, a non-linear mathematical model was proposed to study the combined effect of 
irresponsible infectives and irresponsible susceptible immigrants on the spread of human 
immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) in a variable size population. 
The paper discussed biological feasibility of the model and also presents the basic reproductive 
number of the model. Also, the equilibrium points of the model are found, and stability of the model 
around the equilibria was also studied. It is realized that at the disease free equilibrium, the model is 

stable when R0 < 0 and unstable otherwise. Also, the condition for asymptotical stability of the model 
near the endemic equilibrium is presented. Numerical simulations reveal that the presence of infective 
immigrants significantly affects the spread of the disease and that behavioral change of all classes of 
individuals should be considered in efforts aimed at controlling the spread of the disease. 

 
Key words: Acquired immune deficiency syndrome (AIDS) epidemic, vertical transmission, stability, infective 
immigrants, simulation. 

 
 
INTRODUCTION 
 
One of the many diseases that have gained attention 
throughout the world today is the human 
immunodeficiency virus infection (HIV). It has attracted 
the attention of many individuals, corporate organizations 
and governments since its prevalence has greatly 
increased all over the world, especially Africa. HIV is 
transmitted through unsafe sexual contact with an 
infected individual, transfusion with contaminated blood, 
injection with an infected needle among others. HIV can 
lead to acquired immunodeficiency syndrome (AIDS) 
which renders the immune system defenseless to many 
opportunistic infections. 

 
 
 

 
Mathematicians, among the groups that have taken 

much interest in the spread of the disease, have 
proposed many mathematical models that can help in the 
better understanding of the spread of the disease and the 
effects of various factors that affect the spread. Since the 
initial models of Anderson et al. (1986), many other 
models and their refinements have been proposed by 
mathematical modelers to study HIV/AIDS (De Arazoza 
and Lounes, 2002; Busenberg et al., 1995). In particular, 
Anderson et al., (1986) proposed a model to study the 
effects of some factors on patterns of AIDS. Naresh and 
Tripathi (2005) studied the spread of HIV infection in a 
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population in the presence of tuberculosis. The effect of 
use of condoms on the transmission of HIV/AIDS was 
studied by Greenhalgh et al. (2001). The effect of 
screening of unaware infectives on the spread of HIV 
infection was studied by Tripathi et al. (2007). Karrakchou 
et al. (2006) presented an optimal methodology for 
administering ant-viral medication therapies to HIV 
infection. Baryarama et al. (2005) presented an HIV/AIDS 
model with variable force of infection for the adult 
population. Ying-Yen and Cooke (2000) studied a model 
on change of behavior and treatment of core groups and 
its effect on the spread of HIV/AIDS and found out that 
change of behavior can help in the control of the spread 
of the disease.  

It is noteworthy here that the attitude towards sex and 
other modes of transmission of HIV can play a major role 
in spreading the disease. In the world today, many 
people, especially in Africa and Asia, are ignorant of their 
HIV status due to illiteracy despite the many campaigns 
that encourage people to do the test. These people and 
those who even though are aware they are infected but 
behave in ways that will increase the spread of the 
disease can be considered careless. These careless 
people can play a very important role in the spread of the 
disease. Not much research has been done to study the 
effect of people with different behaviors towards 
HIV/AIDS on the spread of the canker (Tripathi et al., 
2007; Daabo and Baba, 2012; Daabo et al., 2012).  

In the present paper, we modeled the combined effect 
of careless susceptible and infective immigrants on the 
transmission dynamics of HIV/AIDS. We studied the 
model analytically and numerically to gain information 
that could be of benefit in the fight against HIV/AIDS 
transmission. 
 
 
METHODOLOGY 
 
We consider a population of size N(t), which is subdivided into five 

classes: careful susceptibles, S1 (t ) , careless susceptibles, 
 
S 2 (t ) , careless infectives,  I1 (t ) , careful infectives, I 2 (t ) , and  
full-blown AIDS patients  A(t ) with natural mortality rate   in all 
 
classes number of sexual partners of an infective individual, c, 
contact rate between a careless infectives and a careful  
susceptibles, 1 , contact rate between a careful infectives and a 

careless Susceptibles, 2 , contact rate between a careless 

infectives and a careless Susceptibles, 3 , contact rate between a 

careful infectives and a careful Susceptibles, 4 , rate of AIDS 

induced death,  , immigration rate of careless Susceptibles, 1 , 

immigration rate of careless infectives, 2 , immigration rate of 

careful infectives, 3 , conversion rate of careless infectives to full 

blown AIDS, 1 , conversion rate of careful infectives to full blown 
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AIDS, 2 , conversion rate of careless susceptibles to careful 

susceptibles, 1 , conversion rate of careless infectives to careful 

infectives,  2 , natural death rate,  , and rate of recruitment into 
 
the population,  as in Figure 1. The following assumptions are 
made in the development of the model: 
 
1. The population under study is heterogeneous and varying with 
time.   
2. The population under study is subdivided into five groups.   
3. The HIV can only be transmitted through sexual intercourse or 
through infection from infected needle and blood.   
4. The full-blown AIDS class is sexually inactive.   
5. The rate at which careless infectives infect people with the 
disease is higher than that of careful infectives.   
6. The possibility of careless susceptibles contracting the disease is 
higher than that for careful susceptibles.   
7. Change of behavior is positive in the sense that careless 
individuals tend to become careful at varying degrees but the 
reverse does not occur.  

 
In view of the above assumptions, the spread of the disease is 
described by the following system of differential equations: 
 

dS1            c 
  I   

2 I 2  S       
 

 

 1 1 2 3 N  
 1  1      1  

 1 S 2  S1 
 

 

dt         N         
 

                               
 

dS2   N   c 3 I1  4 I 2 S2   
  
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 S 

        (1)  
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2 1   I1 
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3 N  2 I1  2   I2 
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dA 
 1 I1 2 I 2      A 
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With:  
S1 (0)  S10 , S 2 (0)  S 20 , I1 (0)  I10 , I 2 (0)  I 20 , A(0)  A0  
,(initial conditions),  

4 
 

3 
 

2 
. For clarity sake,  we 

 

    1      
 

represent N (t ), S1 (t ), S 2 (t ) I1 (t ), I 2 and A(t )  by N ,  S1 , 
 

S2 ,    I1 , I2 , and A , respectively. By introducing 
 

s1  S1 / N , s2   S 2 / N ,i1  I1 / N ,i2  I 2 / N and 
  

a  A / N and still maintaining the use of the upper case letters, the 

(1) can be re-written as: 
 
dS1   1     

3  
  c 

 
 I    I  S   S   S     

 

   

1 2 2 2  
 

2 
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dS2     c 
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4 2  2 1 2 
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(2)  
dI1 

                                                
 

     c    S   S 
2  

I  
 
 S   S  

 
I    

 
     

 
I  
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2 
 

2 1 
 

dt      
   1  1    3   1    2  1     4   2      1 

 

                                                  

dI2  
3 2 

I
1 2  I2 
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dA 
 1 I1  2 

I
 2 
 
    A 
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Theorem 1: If  S1 (0), S 2 (0), I1 (0), I 2 (0) and  A(0) are non- 
 

negative, then so are   S1 (t ), S 2 (t ), I1 (t ), I 2 (t ) and  A(t ) for all 
 

t  0 . Moreover, 
lim 

SupN (t )  
 

, where 
 

t   
 

                   
 

N  ( S1  S 2  I1  I 2  A) . Furthermore, if N (0)  
 

, 
 

  

  

                     
 

then N (t )  
 

, t  0 . In 
 

particular, 
 

the region; 
 

 
  

 

                     
 

  
, I , I 

 
, A) R

5
 : S  S 

 
 I  I 

 
 A  

 
 

 ( S , S 2 2 2    
 12   1      1  1       

                      
is positively invariant. This theorem implies that the dynamics of the  
model 1 can be sufficiently studied in  , in which the model can be 
considered mathematically and epidemiologically well-posed 
Hethcote (2000). 
 
 

The basic reproduction number, R0 
 
The basic reproduction is one (in fact it is arguably the most widely 
used) of the parameters used to study the prevalence of infectious 
diseases in mathematical modeling. It is used because it gives 
information about the fate of a typical infectious individual that is 
introduced into a population that is entirely of susceptibles. It is 
defined as “the average number of new case of an infection caused 
by one typical infected individual, in a population consisting of 
susceptibles only'' (Diekmann et al., 2010). It is so important  
because if R0 1 it means, during its infective life-span, a typical 

infectious individual infects more than one susceptible leading 

 
 
 

 

persistence of the disease in the population. If, however,  R0  1 it 
 
means, during its infective life-span, a typical infectious individual 
infects less than one susceptible leading eradication of the disease  
in the population. For a history of the evolution of R0 , a recipe for 

its calculation is shown according to Heesterbeek (2002) and 

Heffernan et al. (2005). For a typical epidemiological model, R0 is 
 
normally the largest eigenvalue of the next-generation matrix 
(Diekmann et al., 2010). With this method we obtained: 
 

   c( 
2 
 )  ( 

1 
 )     

 R
0  

 1     1   1      

, where: 
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2 
         
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     2  and        4   .  

1       

2 3        

  1              

    2         2  
 

                        

 
 
Equilibria of the model 
 
In the long-run, there are two scenarios of the model; either the 
disease is eradicated (then we have a disease-free equilibrium) or 
the disease remains prevalent in the system (then we have an 
endemic equilibrium). At the disease-free equilibrium, there are no  

infectives (that is, I1  I 2  A  2 3  0 )  and   the 
 

equilibrium point is E   ( S 
0
 , S 

0
 ,0,0,0) ,     

 

    0 1  2        
 

Where S 
0
 
 [   (1  ) ] 
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  1  1     1    
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( 1  ) 
 2  
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The endemic equilibrium is of the form E 
*
   ( S 

*
 , S 

*
 , I 

*
 , I 

*
 , A

*
 ) 

 

           1 2 1 2 
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  1       

 
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   

 
 c 

 
     

4  
I *     

 
   

  

2 
 

1 
 

2 3 
  

2 1 3 2 
 

2 
 

 

Where S *           4   3         1  1     
 

  

1 
c  

 

 
 

   
 

 
 

 I 
*  c 

 

 
 

 
 

  
 

 

  2  2   1  2  
 

 1       2  1 2   3       
 

*   
2     

1    ,   

S2   
   

  
 

 

   

 
   

 

  c    c  

3  
   

 
     I *  

 

 

1 2 

  

2 

 

4 

  

     
4   

3    2  1 
 

I2
*
     I * 

 

 3 2  1  ,  
2 
 c  

1 
 c 

0  
 c 

 
 

2 
 

 
 

1 
 
 
c 

4 
 

1  
  

 

     
2   
1     1 

     2 
   

 2    
 

  
 

       
2 
 

 
   I 

*
                       

1 111 2 1 c3   c14 1  c01 c4   1  c023  
  

 

A
*
   

  2   3        1              2   2  1      

and 
 

I1
*
 
    

is 
 

the 
   

 

  
 
   

 
       2   c 

3   c 
4  1   c 

2  
1  c 

4  1       

 

2 
  1         2   

    
 

positive   non-zero  real    solution of  the    cubic    equation   
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Local stability analysis of the model 
 
To study the local stability of the system (2), we linearize it at the 
equilibrium points. The Jacobian that linearizes the model is given 
by: 
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Where:  J11 c 1 I1  2 I2   ,  J 22   c 3 I1  4 I2 1   , and  J 33   c 1 S1  3 S2 2 1   

 
Evaluating the Jacobian matrix at the disease-free equilibrium 
gives: 
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The characteristic equation of the Jacobian is given by: 
 
f ( )  (   )( 1    )(     )  ( 2    )( J 33 ( E0 )  ) 2 J 34 ( E0 ) 

 
 
All the first three eigenvalues of the Jacobian matrix have negative 
real parts. The remaining eigenvalues are solutions to the quadratic  
equation  
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               c   

 
1     

 
    c   

2  
1 

1  
 

1  
   

     

 

  

 

   

 

  

B  2 1 2 1 1 1 1 
3  

1  
2    

4  

1  
 

 

1 
  

1 
 

 

   
 

If R0  1, then we have: 
 

c    2    2  
2 
 1 

1   1  
3      2  

4 
 c    

1    2    2     

  1           2    1      1   

       

 c(2  )  1 ((1 1 )  1 )  31 c2 2 ((1 1 )  1 )  41 1   2    2 1    

 ( 
2  )   

1    2    c  ((1  )   )     c 2   ((1  )   )    0 . 
 

 

 
    1  1 1 1 3  1   2 1 1 4   1      

                        
  

This implies that    0 and similarly   0 . Thus, if  R0  1, 
 
then   0 and all eigenvalues of the Jacobian matrix evaluated at 
the disease-free equilibrium have negative real parts, making the 
disease-free equilibrium locally asymptotically stable.  
If  R0  1 then the model is locally asymptotically stable at the  
disease-free   equilibrium,   if   R0  1 then the disease-free 

equilibrium  point  is  an  unstable  point and  if R0 1  then  the  
disease-free equilibrium point is a saddle. The Jacobian matrix of 

the model (1.2) evaluated at the endemic 
equilibrium is given by: 



 

m11 m 
m

13 
m

14 0  
 

 
0 

m
22 

m
23 

m
24 0 

 
 

   
         

m31 
m

32 
m

33 
m

34 0  
 

 
0 0  

 
 

 
 0 

 
 

 2 2         
 

 0 0  
1 

 
2 

 
 

        
  

Where: 
 

m11 m31    0 , 
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m  c  S
*
  0 , m  c  S

*
  0 , 

13 1  1 14 2   1  
m22  m32 1   , m23  c 3 S2

*
  0 , m24  c 4 

S2
*
  0 m31  c 1 I1  2 I2   0 , m32  c 3 I1  

4 I2   0 m33 m13  m23 2 1   
 

m34  m14  m24   0 

 
 

 
The characteristic equation of the Jacobian at the endemic 
equilibrium is given by: 
 

f ( )  
5
  a1 

4
  a2 

3
  a3 

2
  a4  a5 

 
Where: 
 

a1  m22  m33  m11  2  2 

 

a2   2 m34  
2
  2  2  m22  m33  m11 2  2  m11m22  m11m33  m22 m33  m32 m23  m31m13 a

3  m31m14  (    m11  m22 )m34  m32 m24 2 + m22  m33  m11   2    2  2 


  

      
 

       
 

                      
 

 m   m   m   m  m   m m   m  m   (  2  2 )  m  m   m  m   m  m   m   m m  m 
 

 2233  11 22   33 31   13 32 23 
 

  31  1   23  22 33 32 23  11   31   22   13  
                     

 

a4  m32 m24  m22 m34 


 

m
11

m
34 


 

m
31

m
14 2  

m  m   m m  m m   m  m m m   

2 

 
 

  31  1 24     22   34 32   24  11  31 22 14    
 

m22  m33 
 m11 


 

m
32 

m
23 


 

m
22 

m
33 


 

m
31

m
13 


  2  22   

  
 

                     
 

m  m   m  m   m  m   m   m  m  m  (  
2 
 2 ) 

 

 31 1   23   22   33 32 23  11 31 22 13          
 

a   m  m   m  m   m  m m   m m  m  (  ) 
2 
 

 

5  31  1  24  22 34 32   24   11 31 22 14         
 

m  m    m  m   m  m   m   m m  m  (  )( 
2 
 ) 

 

 31 1   23  22 33 32 23  11  31 22 13           
 

 
By the Routh-Hurwitz criterion, the endemic equilibrium point is 
locally asymptotically stable if: 
 

a  0 i [1, 5] , a a a   a 
2
  a

2
 and 

i  1  2  33 1   
( a1a4  a5 )( a1a2 a3  a3

2
  a1

2
 a4 )  a5 (a1a2  a3 )

2
  a1a5

2 
 

 
RESULTS 
 
To observe the dynamics of the system, we numerically 
integrate model (2) using the fourth order Runge-Kutta 
method with the following parameter values: 
 
c  2,   0.01, 2  0.1, 1  0.2, 3  0.3, 4  0.4, 1  0.20, 2  0.3, 1  0.1, 2  0.4,   0.01 
 

,   0.1, 1  0.1, 2   0.20, 3   0.30 , 
 

s1  0.6, s2  0.2,i1  0.1 i2   0.07 and  a  0.03 

 
The results of the computer simulations are graphically 
displayed in Figures 2 to 15 which are variations of the 
various groups due to variations of the indicated 
parameters in the legends. 
 
 
DISCUSSION 
 
It is observed from Figures 2 to  9  that  the  presence  of 

 
infective immigrants leads to an increase in the possibility 
of incidence of transmissions of the disease. This leads to 
a reduction in the number of susceptibles and a 
corresponding increase in the number of infectives. This 
can ultimately lead to an increase in the number of AIDS 
patients in the population. Thus, it is important for 
policymakers to consider the possibility of controlling 
inflow of infectives by such methods like screening. 
Hence, there is the need for effective immigration policies 
to include the services of the health sector so as to make 
management of the spread easier.  

Also, observation of figures Figures 10 to 12 reveals 
that, increasing the rate at which irresponsible 
susceptible individuals become responsible leads to an 
increase in the responsible susceptibles and a reduction 
in the irresponsible infectives and susceptibles. The 
reduction in the irresponsible susceptibles in quite natural 
but the reduction in the infective class is attributable tothe 
fact that responsibility of susceptibles plays a role in the 
responsibility of the infectives. Hence policies aimed at 
behavioral change should not only target the infected 
class but also the susceptible class.  

Further, Figures 13 to 15 reveal that efforts aimed at 
controlling the spread through change of behavior should 
not only target the infected class but also the susceptible 
class. 

 
CONCLUSION 
 
We have in this paper proposed a mathematical model to 
study the combined effect of careless susceptible and 
infective immigrants on the spread of HIV/AIDS in a 
policies such as control on the number of careless 
immigrants into the given population could help control 
the spread of the disease. Also certain model parameters 
such as rate at which careless individuals become careful 
and contact rates among careful individuals and careless 
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Figure 1. Flowchart of proposed model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Variation of Population of Careful Susceptibles for 

different values of 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Variation of Population of Careless Susceptibles 

for different values of 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Variation of Population of Careless Infectives 

for different values of 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Variation of Population of Careful Infectives for 

different values of 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Variation of Population of Careful 

Susceptibles for different values of 3 
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Figure 7. Variation of Population of Careless Susceptibles 

for different values of 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Variation of Population of Careless Infectives 

for different values of 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Variation of Population of Careful Infectives 

for different values of 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Variation of Population of Careful Susceptibles 

for different values of 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Variation of Population of Careless Susceptibles 

for different values of 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. Variation of Population of Careless 

Infectives for different values of 1 
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Figure 13. Variation of Population of Careful 

Susceptibles for different values of  2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14. Variation of Population of Careless Susceptibles 

for different values of  2 
 

 
variable size population. We also presented stability 
analysis of the model and performed numerical 
simulations of the model. It is shown that the basic  
reproductive number,  R0  1, corresponds to a disease 
 
free equilibrium, indicating that the disease is under 
control. The disease however becomes endemic when  
R0  1 and thus the disease remains in the population. 
 
The analysis further showed that strict immigration 
individuals are very important factors that play major roles 
in the spread of the disease. We recommend that 
productive campaign messages be put in place to make 
people careful by way of abstaining from unprotected sex, 
alcoholism, drugs and all other activities that are likely to 
influence people to make impaired judgment thereby 
becoming careless. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Variation of Population of Careful Infectives for 

different values of  2 
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