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The work desires to determine the optimum level of batch size in bottleneck facility and to analyze the 
effect of common processes on throughput and cycle time in a production system under uncertain 
situations created by machine breakdown and quality variation. Few simulation models are developed 
based on a live case from a company. The models are verified and validated with the historical data 
from the company and by face validity. Taguchi approach for orthogonal array is used in designing 
experiments. The experimental settings are executed in WITNESS, a simulation package. It is observed 
that the variation in level of common process in the system has significant impact on the production 
quantity and cycle time. The main contribution of this research is determination of the optimal level of 
batch size in a bottleneck resource under imperfect quality of product and resources breakdown 
uncertainties. This approach can be generalized to any multistage production system, regardless of the 
precedence relationships among the various production stages in the system. 
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INTRODUCTION 

 
Commonality is the use of same version of 
components/processes in multiple/group of products in a 
product family. In literatures, two sources of commonality 
are identified - the component part commonality and the 
process commonality. The process commonality index 
incorporates such concerns as process flexibility, lot 
sizing, sequencing and scheduling common alarms into 
one analytical measurement (Jiao and Tseng, 2000). In 
manufacturing, components commonality refers to the 
use the same components for two or more products in 
their final assemblies. Commonality substantially lowers 
the costs of proliferated product lines, mitigate the effects 
of product proliferation on product and process com-
plexity (Heese and Swaminathan, 2006) . It reduces the 
cost of safety stock, decreases the set-up time, increases  
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productivity and improves flexibility (Zhou and 
Grubbstrom, 2004); reduces the required number of order 
(or setups) (Mirchandani and Mishra, 2002; Hillier, 2002); 
reduces risk-pooling and lead time uncertainty, improve 
the economy of scale, simplify planning, schedule and 
control process, streamlines and speeds up product 
development process (Ma et al., 2002). The authors 
would like to refer the readers to Wazed et al. (2010) for 
details about the commonality, its measurements and 
models. The commonality occurs in its own way in the 
system or can be planned for its preferred happening as 
well. The number and diversity of component parts and 
the corresponding processes mirror the complexity of 
product design and that of production planning and 
control.  

Multi-stage production planning is a system which 

transforms or transfer inventories through a set of con-

nected stages to produce the finished goods. The stages 

represent the delivery or transformation of raw materials, 



 
 
 

 

transfer of work-in-process between production facilities, 
assembly of component parts, or the distribution of 
finished goods. The fundamental challenge of multi-stage 
production is the propagation and accumulation of 
uncertainties that influences the conformity of the outputs 
(Du and Chen, 2000). The present study is concern with 
such a multistage system and simulation is chosen to 
analysis the objectives. A simulation model is a surrogate 
for experimenting with a real manufacturing system. It is 
often infeasible or not cost-effective to do an experiment 
in a real process. Few simulation models are used to 
analyze various effects of uncertain factors namely 
machine breakdown and quality variability.  

Machine breakdown means the failure or stoppage of 
machine(s) for unknown reason(s) and a representation 
of interruption in the process (Koh and Saad, 2003). It 
wields a reduction of capacity level and delays the 
release of products or subassemblies (Wazed et al., 
2008). In this study, the authors assumed that no 
alternative machines are available if the existing 
machines fail and no alternative routing can be executed 
if an order needs to be expedited.  

In the operations management literature, two concepts 
of quality stand out. One defines it as the degree of 
conformance to design specification. This corresponds to 
the view of the quality control technicians. The second 
view considers quality of the design itself. Quality defines 
as the degree to which a system, component, or process 
meets specified requirements or meets customers’ 
expectations (Aas et al., 1992). Quality of a product is a 
measure of perfection. A quality uncertainty of the 
unacceptable material condition not only affects the 
change of finished products, but also creates an 
additional time required at a resource to rework the parts. 
Such additional time spent at a resource, delays the 
planned work to be released to the resource. The factors 
of quality variation are found at Wazed et al. (2008).  

In the quality literature, the quality of a product may fail 
due to variations called chance (or common or random) 
cause variations and assignable cause variations. 
Assignable cause variation can occur at any stage of 
production process and once a defective part is 
produced, all subsequent parts will be bad (Kim and 
Gershwin, 2005). Some of the assignable cause 
variations are defective raw material, improper machine 
setup, worn equipment, man power expertise and skill, 
the product design and specification and poor quality of 
machine. In this article, the inspection is performed at the 
final stages only and the defective product(s) is simply 
rejected.  

The classical lot sizing model assumes the output of 
the production process is of perfect quality. However, in 
real manufacturing system, nonconforming items may 
produce as time goes. These nonconforming items need 
to be screened out. The presence of defective product 
motivate in a smaller lot size. Optimum lot size for each 
stages even more complicated in multistage production 

 
 
 
 

 

system when cycle time for each stage is different. The 
number of defectives may vary in multistage production 
system where the products move from one stage to 
another. Depending on proportion of defective items, the 
optimal batch sizes in the stages also varies. However, 
small batch size may reduce the productivity and stock 
out and this increase the total expected cost. Thus, an 
optimum lot size must be obtained when quality is 
stochastic.  

The effects of the reworking of defective items on the 
economic production quantity (EPQ) model with 
backlogging as studied by Peter (2003). In his study, a 
random defective rate is considered and when regular 
production ends, the reworking of defective items starts 
immediately. Ouyang et al. (2007) have investigated the 
integrated vendor-buyer inventory problem. In their 
model, it is assumed that an arrival order lot may contain 
some defective items and the defective rate is a random 
variable. Also, shortage is allowed and the production 
cycle time is controllable and reducible by adding extra 
crashing cost. Yang and Pan (2004) have developed an 
integrated inventory model that minimizes the sum of the 
ordering/ setup cost, holding cost, quality improvement 
investment and crashing cost. They simultaneously 
optimize the order quantity, lead time, process quality and 
number of deliveries while the probability distribution of 
the lead time demand is normal. But they did not think of 
common process.  

Porteus (1986) has developed the earliest EOQ model. 
It has shown a relationship between lot size and quality. 
Porteus research has encouraged many researchers to 
deal with modeling the quality improvement problems. 
Zhang and Gerchak (1990) have considered a joint lot 
sizing and inspection policy studied under an EOQ model 
where a random proportion of units are defective. Makis 
and Fung (1998) have studied the effect of machine 
failures on the optimal lot size and on the optimal number 
of inspections in a production cycle. Ouyang et al. (2002) 
have investigated the lot size, reorder point inventory 
model involving variable lead time with partial backorders, 
where the production process is imperfect. Chan et al. 
(2003) provide a framework to integrate lower pricing, 
rework and reject situations into a single EPQ model. To 
identify the amount of good quality items, imperfect 
quality items and defective items in each lot, a 100% 
inspection is performed. Ben-Daya and Rahim (2003) 
developed a multistage lot-sizing model for imperfect 
production processes. The effect of inspection errors in 
screening non-conforming items at each stage has been 
incorporated. These writings unfortunately neglect the 
event of resource breakdown and process commonality. 
 

Hong (1995) has developed a mathematical model to 
study the effect of reduction in manufacturing cycle time 

and increase in process quality on lot size computation 
and total relevant cost. Kuik and Tielemans (1999) have 
presented a batch sizing model that minimizes the 



   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Existing production layout of XDE.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Proposed/modified production layout of XDE. 
 
 
 

average queuing delay for a multi-item, single-machine 
work-centre. Later, they investigated the relationship 
between batch size and lead time variability. Machine 
breakdown and common processes are not considered 
for conclusions.  

The major limitations of the earlier studies are: i) the 
combined effects of quality and machine breakdown in a 
multistage production system are ignored; ii) None of the 
studies have considered a multistage production problem 
in determining the optimal lot size in a bottleneck facility;  
iii) None of the models/studies have included common 
process and brought out live case. Under such 
circumstances, the authors studied the effects of process 
commonalities and two uncertain factors, namely 
machine breakdown and quality variation in a multistage 
production system. The main objective of this study is to 
analyze the throughput and average production cycle 
time of the assembly lines in a company, consisting of 
two products under process commonality in a disturbed 
environment. 
 

 

THE PRODUCTION SYSTEM 

 

The company namely XDE (a given name) located in 
Malaysia produces bicycle wheels. This research deals 
with the production and assembly line of bicycle wheel 
only. There are two different end products, product SL 
(line 1) and product DL (line 2) of this system. Parts are 
initially processed in same sawing machine then placed 
in two separate production lines. Each production line 

 
 
 
 
contains 3 (three) different processing (viz. assembly, 
inspection and packing operation) and ended up with 
single end products after the assembly operation. Figure 
1 is showing the existing production layout of the 
company. Presently the company use the conventional 
production processes with known lead time. They 
exercise event trigger policy for any stoppage/break down 
of the lines. 
 

 
EXPERIMENTAL DESIGN 
 
This study developed few simulation models based on the existing 
production layout (Figure 1) of the company. The existing layout is 
modified to introduce common processes in the system. Figure 2 
shows the proposed layout that incorporates commonality 
dimension. Two models, namely the base model (Figure 3a) and 
the commonality model (Figure 3b) are developed in WITNESS 
simulation package. The prominent uncertainty factors - machine 
breakdown and quality variability are applied separately and in 
combined form in simulation exercises with/without the inclusion of 
common processes for analysis.  

In this study, two factors are considered and the effects of these 
factors on the system performance are tested. The level of common 
process and production batch size at blockage station are 
considered as control factor or decision variable. The machine 
breakdown and fraction of non-conforming items are considered as 
noise factor. Analysis of mean value, signal to noise ratio and 
ANOVA are used to analyze the effect of batch size and common 
process on production cycle time and throughput quantity. Before 
confirmed the results, interaction effect are observed to make sure 
that the characteristic of the control factors is additive.  

The ranges of factor levels are selected based on capacity 

limitation and in consultation with the engineers in the company 

(Table 1). Based on the historical data, three defective rates are 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. (a) Base and (b) Proposed commonality models in WITNESS. 
 

 
considered: 3, 5 and 7% and the machine breakdown are taken as 
40, 20 and 10 operations. 

Since this study contains two control factors (one is four levels 
and other one is two levels) and two noise factors of three levels for 

each, thus 41  2
1

  3
2

  72 design points are required in case of  
full (or complete) factorial design. Each experiment is simulated 
with nine replications (two noise factors of three levels each) and 
the average value and its signal to noise ratio are obtained and 
analyzed. In order to evaluate the experimental results statistically, 
analysis of variance (ANOVA) is applied. The same are used to see 
the effect of the interaction. Statistical significance tests of effects 
are made at 5% significance level. 
 

 
COLLECTION AND VALIDATION OF DATA/MODEL 
 
In order to build the simulation models and to set the initial level of 
various factors in the model, data were collected. The data includes 
processing time at each stages, setup time, average defective 
proportion, machine breakdown etc. The historical data shows that 
the cycle time and setup time for lancing station are much higher 
than the others. It is the bottleneck of the system. Therefore, in this 
article different levels of batch size are considered to analyze the 
effects of production quantity and cycle time.  

Data are needed for building the simulation model, validating the 
model and to serve as guideline in determining the level of the 
noise factor. Validation of data are performed to ensure that these 
are for the right issue and useful. The recorded data were 

 
 

 
scrutinized by the production engineers who are familiar with the 
specific processes. 

The simulation models are validated by comparing the simulated 
output with historical data collected from the floor and also by face 

validity. The models run for 260 days after a warm-up period of 2  
260 days and then the simulated results are generated. The run 

time for a 9 h shift for 260 days is 9  60  260 min, which is same 
with the operation schedule of the lines. The warm-up period is 
used to assure the accurate result. Throughput quantity for the real 
system and simulation model are shown in Table 2. The authors 
have authenticated the models by an expert and authorized 
WITNESS trainer for face validity. As the variation in the 
throughputs between the real system and simulation model is not 
large and also the face validation permitted with good 
recommendations, hence the simulation models are acceptable for 
analyzing the system. After validating the base model, various 
uncertainties are imposed to the models to investigate the case 
wise impacts. 

 

DATA ANALYSIS AND DISCUSSION 
 
The authors have conducted a total of 72 experiments. 
The summary of experimental results for the production 
cycle time and production quantities with corresponding 
S/N ratio for each exercise of line 1 and Line 2 are 
observed. The smaller the better characteristic is used for 
cycle time and in calculating the corresponding S/N ratio. 



       

Table 1. Control factors and their levels for Taguchi method.       
        

 Control factors Level 1 Level 2 Level 3 Level 4  

 Batch size at the bottleneck station (that is Lancing), A 2 6 12 20   

 Common process, B 0 2 - -   

 

 
Table 2. Comparison between the existing system and simulation model for 260 days.  

 
Response Existing system Simulation model  

Mean yearly throughput for SL 2030 2067  

Mean yearly throughput for DL 2050 2077  

Mean cycle time for SL (min) 300 279.73  

Mean cycle time for DL (min) 290 272.32  

 

 
Table 3. Response table for production quantity for Lines 1 and 2 (the larger the better).  

 
 Mean (line 1) S/N ratio (line 1) Mean (line 2) S/N ratio (line 2)  

Level Batch Common Batch Common Batch Common Batch Common  
 size process size process size process size process  

Level 1 1930 3872 65.70 71.16 1933 3859 65.72 71.13  

Level 2 4446 6308 72.78 74.58 4426 6312 72.73 74.59  

Level 3 7233 - 76.69 - 7233 - 76.69 -  

Level 4 6750 - 76.30 - 6750 - 76.30 -  

Diff 7233 6308 76.69 74.58 7233 6312 76.69 74.59  

Rank 1930 3872 65.70 71.16 1933 3859 65.72 71.13  

Opt 5303 2436 10.99 3.41 5300 2453 10.97 3.46  

 

 

The larger the better principle is adopted for production 
quantity and for corresponding S/N ratio.  

Since the experiment design is orthogonal, the effect of 
batch size and common process for different levels are 
separated out. Table 3 shows the response for mean and 
S/N ratio for production quantity and the same for 
production cycle time is shown in Table 4 for both of the 
production lines. Since the characteristic of these factors 
for production quantities are the larger the better, the 
batch sizes are chosen based on larger mean and S/N 
ratio for production level and for production cycle time, 
the smaller the better policy is used. The selection in later 
case is based on the smaller mean and larger S/N ratio. 
Because the larger the S/N ratio the smaller the variance 
are around the desired value. It is pellucid that an 
increase in the batch size yield an increase in production 
level in the system, but the capacity restrains the further 
increase in the batch size. Thus, based on response table 
(Tables 3 and 4), the batch size and common process are 
chosen as 12 and 2 respectively. 

Figures 4 and 5 shows the interaction effects of 
variation in levels of control factors for (a) mean value 
and (b) S/N ratio of production quantity and cycle time 
respectively for Line 1. The same for Line 2 are shown in 
Figures 6 and 7. The figures show that the effect of batch 

 

 

size on production level and cycle time at two different 
levels of common process is not the same. This implies 
that there is an interaction between these two factors. 
The production quantity is peak and cycle time is least 
when the batch size is 12 and common process is at the 
highest levels. 

Table 5 shows the ANOVA for production quantity in 
mean and S/N ratio for Line 1 and Line 2. The same for 
production cycle time for both of the lines are shown in 
Table 6. These tables show the relative importance of the 
control factors affecting the throughput and cycle time. 
Both mean and signal to noise ANOVA indicates that 
batch sizes in lancing station (factor A) and use of 
common process (factor B) is statistically significant. The 
factors have impacts on production quantity and cycle 
time.  

Based on ANOVA (Tables 5 and 6) and response table 

(Tables 3 and 4), it is obvious that batch size of 12 in the 
lancing station and 2 common processes yield the lowest 

cycle time and maximum throughput in the system. 
 

 

Conclusions 

 

The authors have developed the simulation models of the 



 
 
 

 
Table 4. Response table for production cycle time for Lines 1 and 2 (the smaller the better).  

 
  Mean (line 1) S/N ratio (line 1) Mean (line 2) S/N ratio (line 2)  

 Level Batch Common Batch Common Batch Common Batch Common  
  size process size process size process size process  

 Level 1 277.80 283.70 -48.88 -49.06 282.40 287.80 -49.02 -49.18  

 Level 2 194.30 123.10 -44.78 -39.56 196.20 123.70 -44.85 -39.58  

 Level 3 165.90 - -41.14 - 167.40 - -41.18 -  

 Level 4 175.60 - -42.42 - 176.90 - -42.47 -  

 Diff 277.80 203.66 -41.14 -39.56 282.40 210.59 -41.18 -39.58  

 Rank 165.90 123.13 -48.88 -49.06 167.40 123.69 -49.02 -49.18  

 Opt 111.90 160.50 7.73 9.50 115.00 164.10 7.84 9.61   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Interaction plot for (a) mean value and (b) S/N ratio of production level for Line 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Interaction plot for (a) mean value and (b) S/N ratio of production cycle time for Line 1. 

 

 

production line of a Malaysian company producing 
various bicycle wheels under the machine breakdown 
and quality uncertainties. The models have been run for a 
reasonable warm-up period. The necessary data and 
information has been collected from the floor and face-to-
face conversations. The data and models have been 

 
 

 

verified and validated. Intensive investigations have been 

carried out. From the experiences of the analysis and 

from the outcomes of the models, the authors would like 

to conclude that: 
 

The developed simulation models for the production 



   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Interaction plot for (a) mean value and (b) S/N ratio of production level for Line 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Interaction plot for (a) mean value and (b) S/N ratio of production cycle time for Line 2. 

 

 
Table 5. ANOVA for Mean value and S/N ratio of production quantity of Lines 1 and 2.  

 

Source 
 Mean value (line 1)   S/N ratio (line 1)  

 

DF SS MS F P SS MS F P 
 

  
 

A  3 12341766 4113922 108.518 0.001 306.887 102.296 68.32 0.003 
 

B  1 389207 389207 10.2666 0.048 8.967 8.967 5.99 0.039 
 

Error  3 113730 37910   4.492 1.497   
 

Total  7 128444703    320.346    
 

 S = 615.7; R-Sq = 99.09%; R-Sq(adj) = 97.88%  S = 1.224; R-Sq = 98.56%; R-Sq(adj) = 96.65% 
 

 

  Mean value (line 2)   S/N ratio (line 2)  

A 3 12423798 4141266 103.142 0.002 307.354 102.451 64.23 0.003 

B 1 434519 434519 10.8221 0.037 6.45975 6.45975 4.05 0.038 

Error 3 120453 40151   4.786 1.595   

Total 7 12978770    318.6    

 S = 633.7; R-Sq = 99.04%; R-Sq(adj) = 97.77%  S = 1.263; R-Sq = 98.48%; R-Sq(adj) = 96.44% 
 

 

system of the company under consideration are verified 

and validated with the historical data and by face validity. 

The comparison shows that simulated deliveries are 

acceptable for further investigations. 

 

 

Since the lancing stations process a batch of parts at a 

time and they are bottleneck of the system, the authors 

have analyzed (varying the batch size and making the 

processes common) for detail investigations. Based on 



        

 Table 6. ANOVA for Mean value and S/N ratio of production cycle time of Lines 1 and 2.    
        

 Source Mean value (line 1)   S/N ratio (line 1)   

  DF SS MS F P SS MS F P  

 A 3 105029 35009.7 12.29 0.025 405.176 135.059 5.83 0.049  

 B 1 104766.6 104767 6.85 0.042 104.497 104.497 4.51 0.05  

 Error 3 45883 15294.4   69.51 23.17    

 Total 7 255678.6    579.183     

  S = 123.7; R-Sq = 72.00%; R-Sq(adj) = 34.67%  S = 4.814; R-Sq = 85.71%; R-Sq(adj) = 66.66%  

   Mean value (line 2)   S/N ratio (line 2)   
 A 3 109612 36537.3 22.5539 0.026 420.891 140.297 6.01 0.047  

 B 1 15100 15100.3 9.32117 0.04 107.08 107.08 4.59 0.049  

 Error 3 4860 1620   69.988 23.329    

 Total 7 129572    597.959     

  S = 127.3; R-Sq = 71.96%; R-Sq(adj) = 34.56%  S = 4.830; R-Sq = 86.13%; R-Sq(adj) = 67.64%  

 
 

 

the least manufacturing cycle time and maximum 
throughput the optimum batch sizes 12 when the two 
processes are common for both production lines.  

Batch sizes in lancing stations and making the 
processes common for both lines, the system outcomes 
improved. ANOVA for mean and S/N ratio for cycle time 
and throughput indicate that no important factor is omitted 
from experiments.  

There is strong interaction among the common process 
and the batch sizes in lancing stations. The production 
quantity is peak and cycle time is least when the batch 
size is 12 and common process is at the highest level.  

The authors have considered only two noise factors 
(uncertainties) in this article (viz. machine breakdown and 
quality variation) and have analyzed the impacts of 
common process and batch size on production quantities 
and cycle time. In real production systems, there are so 
many uncertainties (Wazed et al., 2009) those need to 
deal with. 
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