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In this paper we consider resource-constrained type-I assembly line balancing problem (RCALBP- I) in 

which resource of different types, such as machines and workers, are required in processing tasks. The 
objective of RCALBP-I is to minimize not only the number of workstations needed, but also the number 

of resource types required. A shortest route algorithm is proposed to find the optimal solution for 
RCALBP-I. An illustrative example is also given to show the effectiveness of the proposed algorithm. 
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INTRODUCTION 

 
Assembly line balancing problem (ALBP) has been studied 

extensively since the pioneer work of (Bryton, 1954; 

Salveson, 1955; Jackson, 1956). During the past decades 

numerous optimal approaches have been developed to 

solve ALBP with different characteristics, including parallel, 

U-type, mixed-model, two-sided, etc. For extensive surveys 

(Baybars, 1986; Ghosh and Gagnon, 1989; Erel and Sarin, 

1998; Scholl, 1999; Becker and Scholl, 2006). In the 

literature, the so-called type-I ALBP (ALBP-I) considers an 

assembly line that consists of a set of tasks with given 

processing times and precedence relationships that define 

the permissible ordering of tasks. The objective of ALBP-I is 

to assign the set of tasks to successive workstations in order 

to minimize the number of workstations needed for a given 

cycle time Ghosh and Gagnon (1989). The following 

definition of ALBP-I is adapted from Gutjahr and Nemhauser  
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(1964). 

Given a set A of tasks to be assigned, a positive real 
valued function T defined on A representing processing 
times of tasks, and a partial order P defined on A 
denoting precedence relationship among tasks. Let C be 
the given cycle time and N be the number of workstations 
needed in the assembly line. The objective of ALBP-I is to 
find a partition of the set A into successive  
subsets Ai  A , i  1,..., N , so that the number of 

workstations N is minimized. Let T (x) denote the 

processing time of task x, and T ( Ai )  T (x) be the 

xAi  
total processing time of the tasks in subset Ai . A partition 

of subsets Ai is feasible if the following conditions hold: 

 
N  

Ai   A , (1) 
i 1  



 
   

Ai     Aj   , i  j , (2) 

T ( Ai )  C , i  1,..., N , (3) 

If xPy (that is, x precedes y) and x  Ai , y  Aj , then 

i  j .  (4) 

 

Conditions (1) and (2) simply state that all the tasks have 
to be assigned, and each task is assigned to one and 
only one subset; condition (3) ensures that, for any 
subset, the total processing time of the tasks in the 
subset does not exceed the given cycle time, while 
condition (4) maintains precedence relationship among  

tasks. Conventionally, subset Ai is usually called 

workstation i, and a task x is said to be assigned to 

workstation i if x  Ai .  
Recently, some researchers studied assembly system 

design problems (ASDP) in which the objective was to 
optimize some economic criteria (e.g., total cost) with 
machine selections (Nicosia et al., 2002; Yamada and 
Matsui, 2003). However, only limited researches discuss 
the practical situation of resource constraints that arises 
often in assembly line balancing. In the real-world ALBP, 
different types of resources (such as machines and 
workers) are often required in task processing; as pointed 
out by A pak and Gökçen (2005), the issue of line 
balancing with limited resources has always been a 
serious problem in industry. In their recent paper A pak 
and Gökçen (2005) developed a 0 - 1 integer 
programming model for a resource-constrained ALBP, 
and the objective was to balance the assembly line so 
that the number of resources required was minimized for 
a given number of workstations.  

In this paper, we revisit the same ALBP considered by 
A pak and Gökçen (2005), for convenience, we call the 
problem resource-constrained type-I ALBP, or simply 
RCALBP-I; however, the objective is to minimize not only 
the number of workstations needed, but also the number 
of resource types required. Motivation of this paper arises 
from practical needs. In practice, a workstation in the 
assembly line usually consists of one or more dedicated 
machines as well as workers and tools. Thus, minimizing 
both the number of workstations and resources is 
equivalent to utilizing the least number of machines, 
workers, and tools. We propose an optimal approach, 
based on the shortest route algorithm developed by 
Gutjahr and Nemhauser (1964), to solve RCALBP-I 
considered in this paper. The paper is organized as 
follows: first, problem description of RCALBP-I is given; 
then, the proposed optimal approach is described, 
followed by an illustrative example given by A pak and 
Gökçen (2005), conclusion and future research are 
discussed in the last. 

 
 
 
 

 
METHODOLOGY 
 
Definition of RCALBP-I 
 
As stated above, RCALBP-I differs from the traditional ALBP-I 
defined previously in that different types of resource are required in 

task processing in RCALBP- I. The definition of RCALBP-I is 
described as follows. Consider the ALBP-I with a given cycle time 
C, and let A be the set of tasks to be assigned and N be the number 

of workstations needed. Also, let T (x) and R(x) be the  

processing time and the resource type required for task x  A ,  
respectively. For simplicity, we assume in this paper that each task 
requires only one type of resource; the extension to multiple types 

of resource is straightforward. Let Ai  A be the subset consisting 

of tasks that are assigned to workstation i, then T (Ai ) is the total 

processing time and R(Ai ) is the set of resource types 
 

required for workstation i. Let R(Ai ) denote the number of   
resource types required for workstation i . Therefore, for RCALBP-I 

considered in this paper, the objective is to find a feasible partition  

Ai  in order to minimize both the number of workstations N and the 
 

N 

number of resources R( Ai ) for the assembly line.  
i 1 

 
 
The shortest route algorithm 
 
In order to develop the shortest route algorithm, we need to show 

how to construct the network diagram for RCALBP-I. The 
construction procedure consists of two parts: nodes generation and 

arcs generation, which are explained in details below. 

 

Nodes generation 
 
In this paper we adapt the procedure developed by Gutjahr and 
Nemhauser (1964), in nodes generation. In the network diagram, a 
node is represented by the so-called state that is simply a subset of 
tasks. These subsets (that is, states) are generated stage by stage, 
and satisfy the following properties: 
 
(i) No subsets are duplicated during the generation procedure. 
(ii) All subsets generated are states.  
(iii) Every subset is generated. 
 
Conceptually, the proposed shortest route algorithm enumerates all 
the feasible partitions in order to find the optimal ones that achieve 
the desired objective.  

The procedure starts from stage 0 with the empty set as the first 
state generated. The set of tasks with no predecessors are placed 
in stage 1 and are considered as “marked” tasks. All the subsets of 
the marked tasks are generated and are defined as states. For 
each generated state S, an unmarked immediate follower is defined 
as a task that is an immediate successor of at least one task in S 
and is not preceded by any tasks not in S. In general, for any state  

Sk generated in stage n, the unmarked immediate followers of Sk 

are placed in a set F (Sk ) . For each subset Sl  F (Sk ) , the 

union Sk Sl is generated as a new state in stage n 1. When all 

the states in stage n have been considered, the tasks in 



 
 
 

 

F (Sk ) are then marked and the procedure is repeated for stage 
 
n 1. The procedure of nodes generation is finished when all the 
tasks are marked and all states are therefore generated. 
 

 
Arcs generation 
 
In their paper, Gutjahr and Nemhauser (1964) developed a 
procedure of arcs generation in which only one optimal solution was 
given because just a necessary portion of feasible arcs was 
generated. In this paper, we propose a modified arcs generation 
procedure in which we enumerate all the feasible arcs so that the 
desired solution for RCALBP- I can be found from among all the 
alternative optimal solutions of ALBP-I. The proposed arcs 
generation procedure is described as follows.  

As mentioned above, a state  Sk represents a node k in the  
network diagram constructed (that is, the number of states 
generated is equal to the number of nodes). In the proposed 
procedure, arcs are also generated stage by stage. The procedure 
starts from stage 0 with state 0 as node 0, which is considered as 
“marked” node. A directed arc is generated from node 0 to node k if 

a state Sk satisfies T (Sk )  C , and all the nodes having  
directed arcs from node 0 are placed in stage 1 as marked nodes. 

In general, for any marked node k in stage n, a directed arc is  

generated from node k to an unmarked node l if a state Sl  satisfies  

Sk   Sl  and  T (Sl )  T (Sk )  C ; and node l is placed in 
 

stage n 1 as marked node. The procedure is terminated when all  
the nodes have been marked. Note that, in the proposed procedure, 
all feasible paths are enumerated from node 0 (that is, the empty 
state) to the last node (i.e., the state containing all the tasks). 
According to Gutjahr and Nemhauser (1964), the number of 
directed arcs needed for a path from node 0 to the last node is 
equal to the minimum number of workstations needed for the 
assembly line. The remaining issue is to find the paths that also 
minimize the number of resources required, which is accomplished 
as follows. 

 
Computation of shortest routes 
 
In order to find the desired solution, the length of arcs is defined as 

follows. Consider the directed arc (k,l) from node k to node l, and  

let Sk   and Sl be the  associated states respectively. Let 

Ai  Sl / Sk , that is, Ai denotes a workstation i containing task 

x  Sl / Sk . Then, the length of arc (k,l) is defined to be  

R(Ai ) , the number of resource types required for workstation i. 
Let N be the minimum number of workstations obtained in the  

N 

above procedure of nodes generation, then R( Ai ) is equal to  
i 1  

the total number of resource types required for a path from node 0 

to the last node. Therefore, the path with the minimum value of 
N 

R( Ai ) is the desired solution that not only gives the minimum  
i 1  

number of workstations but also requires the minimum number of 

resource types. 

  
  

 
 

 
Illustrative example 
 
We use the example presented in A pak and Gökçen (2005), as 

depicted as in Figure 1 with the given cycle time C  9 , to 
illustrate the proposed shortest route algorithm. As shown in the 
figure, there are 11 tasks (represented by nodes) and their 
processing times as well as the required resource type are given 
next to the nodes. For instance, processing time of task 1 is 6 and 
the required resource is type A (Figure 1 Illustrative example by A 
pak and Gökçen 2005). 

 

Nodes generation 
 

Starting from stage 0, we have the first generated S0   (the 

empty set containing no task). Since task 1 is the only unmarked 

immediate follower, we have F (S0 )  {1} and place task 1 in 
 

stage 1 as marked. The only subset of F (S0 ) is {1}; by taking 

the union of S0 and {1}, we generate the state S1  S0 {1}  

{1} and proceed to stage 1. In stage 1, the 
 

unmarked immediate followers of state S1 are tasks 2, 3, 4 and 5, 

and we have F (S1)  {2,3,4,5} and these tasks are then 
 

placed in stage 2 as marked. By taking the union of S1 and each 

subset of F(S1) , we generate the states S2  {1,2} to S16  

{1,2,3,4,5} as shown in Table 1. The procedure continues 
 
and the result of nodes generation is summarized as in Table 1, in 
which state time is the total processing time of tasks in the state. As 
seen in the table, there are totally 51 states generated (in which the  

last state S51  contains all tasks) (Table 1, Nodes generation). 
 

 
Arcs generation 
 

Starting from stage 0 with the empty state S0  as node 0, we 
 
generate directed arcs from node 0 to nodes 1, 2, 5, and 8 (that is, 

states S1  {1}, S2  {1,2} , S5  {1,5} , and S8  {1,2,5} 
 
respectively) because their state times are less than or equal to the 

cycle time 9 and they contain state S0 as subset. These nodes are 
 
placed in stage 1 as marked, and the procedure proceeds to stage 

1. Take node 5 with state S5  {1,5} as example, directed arcs 
 
are generated from node 5 to nodes 10, 11, 13, 20, 14, and 22 

because (i) the differences between their state times and that of the  

state S5  are less than or equal to the cycle time 9, and (ii) the state  

S5  is subset of these states. The procedure continues and the 
 
result of arcs generation is summarized as in Table 2 (Table 2 Arcs 

generation). 
 
 

Computation of shortest routes 
 

The resulting network diagram obtained from the 

procedures is as depicted in Figure 2 (Figure 2 Network 



         
 

    (2,B) (2,B)  (6,B)   
 

    2 6  8   
 

    
(5,A) 

   (5,B)  
 

       

10 
 

 

    
3 

    
 

         
 

   (6,A) (7,B) (3,A) (5,A)  (4,A) 
 

   1 4 7  9  11 
 

    (1,A)      
 

    5      
 

   Figure 1. Illustrative example by (A pak and Gökçen, 2005).   
 

  Table 1. Nodes generation.       
 

         
 

  Stage Marked tasks State Node Tasks in state State time Immediate followers 
 

  0  
S

0 0   0 1 
 

  1 1 
S

1 1  1 6 2, 3, 4, 5 
 

  2 2, 3, 4, 5 
S

2 2  1, 2 8 6 
 

    S3 3  1, 3 11  
 

    S4 4  1, 4 13  
 

    S5 5  1, 5 7  
 

    
S

6 6  1, 2, 3 13 6 
 

    S7 7  1, 2, 4 15 6 
 

    S8 8  1, 2, 5 9 6 
 

    S9 9  1, 3, 4 18  
 

    
S

10 10  1, 3, 5 12  
 

    
S

11 11  1, 4, 5 14  
 

    
S

12 12  1, 2, 3, 4 20 6 
 

    
S

13 13  1, 2, 3, 5 14 6 
 

    
S

14 14  1, 2, 4, 5 16 6 
 

    
S

15 15  1, 3, 4, 5 19 7 
 

    
S

16 16  1, 2, 3, 4, 5 21 6, 7 
 

  3 6, 7 
S

17 17  1, 2, 6 10 8 
 

    
S

18 18  1, 2, 3, 6 15 8 
 

    
S

19 19  1, 2, 4, 6 17 8 
 

    
S

20 20  1, 2, 5, 6 11 8 
 

    
S

21 21  1, 2, 3, 4, 6 22 8 
 

    
S

22 22  1, 2, 3, 5, 6 16 8 
  



          

Table 1. Nodes generation (continued).       
          

  Stage Marked tasks State Node Tasks in state State time Immediate followers 

    
S

23 23 1, 2, 4, 5, 6 18 8   

    
S

24 24 1, 3, 4, 5, 7 22 9   

    
S

25 25 1, 2, 3, 4, 5, 6 23 8   

    
S

26 26 1, 2, 3, 4, 5, 7 24 9   

    
S

27 27 1, 2, 3, 4, 5, 6, 7 26 8, 9   

4 8, 9 
S

28 28 1, 2, 6, 8 16 10   

    
S

29 29 1, 2, 3, 6, 8 21 10   

    
S

30 30 1, 2, 4, 6, 8 23 10   

    
S

31 31 1, 2, 5, 6, 8 17 10   

    
S

32 32 1, 2, 3, 4, 6, 8 28 10   

    
S

33 33 1, 2, 3, 5, 6, 8 22 10   

    
S

34 34 1, 2, 4, 5, 6, 8 24 10   

    
S

35 35 1, 3, 4, 5, 7, 9 27    

    
S

36 36 1, 2, 3, 4, 5, 6, 8 29 10   

    
S

37 37 1, 2, 3, 4, 5, 6, 7, 8 32 10   

    
S

38 38 1, 2, 3, 4, 5, 7, 9 29    

    
S

39 39 1, 2, 3, 4, 5, 6, 7, 9 31    

    
S

40 40 1, 2, 3, 4, 5, 6, 7, 8, 9 37 10   

5 10 
S

41 41 1, 2, 6, 8, 10 21    

    
S

42 42 1, 2, 3, 6, 8, 10 26    

    
S

43 43 1, 2, 4, 6, 8, 10 28    

    
S

44 44 1, 2, 5, 6, 8, 10 22    

    
S

45 45 1, 2, 3, 4, 6, 8, 10 33    

    
S

46 46 1, 2, 3, 5, 6, 8, 10 27    

    
S

47 47 1, 2, 4, 5, 6, 8, 10 29    

    
S

48 48 1, 2, 3, 4, 5, 6, 8, 10 34    

    
S

49 49 1, 2, 3, 4, 5, 6, 7, 8, 10 37    

    
S

50 50 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 42 11   

 6 11 
S

51 51 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 46    
 
 

 

diagram of the illustrative example). 
As seen in the figure, six arcs are needed for a path 

from node 0 to the last node (that is, state S51 ); 
 
according to Gutjahr and Nemhauser (1964), this means 
that the minimum number of workstations needed is 6. 
Also we see that many alternative paths exist, indicating 
that there are alternative optimal solutions using the 
same minimum number of workstations. In order to find 

 
 

 

the desired solutions for RCALBP-I that also minimizes 

the number of resource types required, we need to 

compute the length of arcs. Take the arc (2,14) directed  

from node 2 to node 14 for example, we have S14 / S2  

{4,5}. As defined above, the length of arc  

(2,14) is given by R({4,5})  2 because task 4 and task 5 

require resource type A and B respectively. After 
 



     

  Table 2. Arcs generation.   
      

  Stage Marked nodes Node Arcs to nodes 

  0 0 0 1, 2, 5, 8 

  1 1, 2, 5. 8 1 3, 4, 6, 7, 10, 11, 13, 17, 18, 20 

    2 6, 7, 13, 17, 18, 20, 14, 19, 22, 28, 31 

    5 10, 11, 13, 20, 14, 22 

    8 13, 20, 14, 22, 31, 23 
  2 3, 4, 6, 7, 10, 11, 13, 17, 18, 20, 14, 19, 3 9, 12, 15 

   22, 28, 31, 23 4 9, 12, 15, 16, 21, 24 

    6 12, 16, 21, 29, 33 

    7 12, 16, 21, 25, 26, 30, 34 

    10 15, 16 

    11 15, 16, 24, 25 

    13 16, 25, 33 

    17  

    18 21, 25, 29, 33 

    20  

    14 16, 25, 26, 34 

    19 21, 25, 30, 34, 27 

    22 25, 33 

    28 30, 34, 33, 29, 41, 44 

    31 34, 33, 44 

    23 25, 34, 27 
  3 9, 12, 15, 16, 21, 24, 25, 26, 30, 34, 33, 9 35 
   29, 27, 41, 44   

    12 32, 36, 38 

    15 35 

    16 36, 38 

    21 39, 32, 36 

    24 35, 38, 39 

    25 37, 36, 39 

    26 37, 38, 39 

    30 43, 47, 32, 36, 37 

    34 36, 37, 47 

    33 46, 36 

    29 42, 32, 36, 46 

    27 37, 39 

    41 42, 43, 46, 47 

    44 46, 47 

  4 35, 32, 36, 38, 39, 37, 43, 47, 46, 42 35  

    32 40, 45, 48, 49 

    36 40, 48, 49 

    38 40 

    39 40 

    37 40, 49 

    43 48, 45, 49 

    47 48, 49 

    46 48 

    42 48, 45 

  5 40, 45, 48, 49 40 50, 51 

  5  45 50 
  5  48 50 



 
      

Table 2. Cont’d.       
        

 Stage Marked nodes Node Arcs to nodes   

5  49 50, 51    

6 50, 51 50     

6  51      
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Figure 2. Network diagram of the illustrative example. 

 

 

computing the length of all directed arcs, we may apply 

any shortest route algorithm such as Dijkstra (1959) to 

find the shortest routes from node 0 to the last node. 

 
 

 

Computational result is also shown in Figure 2, in which 

there are totally six shortest routes represented in bold 

lines; the minimum number of resource types required is 



     
 

 6 

R( Ai ) 

 

 6 . 

   
 

given by  Take the route 
  

i 1  

S0  S1  S7  S26  S37  S49  S51  for example 
 
to show how the result of task assignment can be 
obtained. Tasks assigned to workstations 1 through 6 are  

given   by A1  S1 / S0  {1} , A2  S7 / S1  {2,4} , 

A3  S26 / S7  {3,5,7} ,  A4  S37 / S26  {6,8}, 

A5  S49 / S37  {10} and A6  S51 / S49  {9,11} 

respectively, which is the same optimal solution obtained 
in A pak and Gökçen (2005). Note that, although there 
are five other shortest routes, only one possible different 
task assignment can be obtained (for example, from the  

path S0  S5  S14  S34  S47  S49  S51 ): 

A1  S5 / S0  {1,5} , 
A

2  S14 / S5  {2,4} , 

A3  S34 / S14  {6,8} , A4  S47 / S34   {10}, 

A5  S49 / S47  {3,7} and A6  S51 / S49  {9,11} . 
 

 

Conclusion and future research 

 

In this paper we consider type-I assembly line balancing 
problem with resource constraint (RCALBP-I) in which the 
objective is to find the optimal task assignment that 
minimizes not only the number of workstations needed, 
but also the number of resource types required. It is of 
practical importance that the number of resource types 
should be minimized as possible in order to utilize the 
least number of resource requirements.  

We propose a shortest route algorithm in which all 
alternative optimal solutions are enumerated in order to 
find the desired solution of RCALBP-I. Future research 
may include extensions of the proposed algorithm to 
solve different types of assembly line balancing problem 
and the development of efficient algorithms to solve 
practical large-size problems. 
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